

SIGNAL INTEGRITY ANALYZER

USER'S GUIDE AND REFERENCE MANUAL

This page intentionally left blank.

WAVECREST CORPORATION continually engages in research related to product improvement. New material, production methods, and design refinements are introduced into existing products without notice as a routine expression of that philosophy. For this reason, any current **WAVECREST** product may differ in some respect from its published description but will always equal or exceed the original design specifications unless otherwise stated.

Copyright 2006

WAVECREST CORPORATION

A Technologies Company 7626 Golden Triangle Drive Eden Prairie, Minnesota 55344 (952) 831-0030 (800) 733-7128 www.wavecrest.com

ALL RIGHTS RESERVED

U.S. Patent Nos. 4,908,784 and 6,185,509, 6,194,925, 6,298,315 B1, 6,356,850 6,393,088, 6,449,570 and R.O.C. Invention Patent No. 146548; other United States and foreign patents pending.

GigaView, TailFit, OE-2, PM50, AG-100, and SIA-4000 are trademarks of *WAVECREST CORPORATION*. PCI Express is a registered trademark of PCI-SIG in the United States and/or other countries. InfiniBand is a registered trademark of the InfiniBand Trade Association.

ATTENTION: USE OF THE SOFTWARE IS SUBJECT TO THE WAVECREST SOFTWARE LICENSE TERMS SET FORTH BELOW. USING THE SOFTWARE INDICATES YOUR ACCEPTANCE OF THESE LICENSE TERMS. IF YOU DO NOT ACCEPT THESE LICENSE TERMS, YOU MUST RETURN THE SOFTWARE FOR A FULL REFUND.

WAVECREST SOFTWARE LICENSE TERMS

The following License Terms govern your use of the accompanying Software unless you have a separate written agreement with Wavecrest.

License Grant. Wavecrest grants you a license to use one copy of the Software. USE means storing, loading, installing, executing or displaying the Software. You may not modify the Software or disable any licensing or control features of the Software.

Ownership. The Software is owned and copyrighted by Wavecrest or its third party suppliers. The Software is the subject of certain patents pending. Your license confers no title or ownership in the Software and is not a sale of any rights in the Software.

Copies. You may only make copies of the Software for archival purposes or when copying is an essential step in the authorized Use of the Software. You must reproduce all copyright notices in the original Software on all copies. You may not copy the Software onto any bulletin board or similar system. You may not make any changes or modifications to the Software or reverse engineer, decompile, or disassemble the Software.

Transfer. Your license will automatically terminate upon any transfer of the Software. Upon transfer, you must deliver the Software, including any copies and related documentation, to the transferee. The transferee must accept these License Terms as a condition to the transfer.

Termination. Wavecrest may terminate your license upon notice for failure to comply with any of these License Terms. Upon termination, you must immediately destroy the Software, together with all copies, adaptations and merged portions in any form.

Limited Warranty and Limitation of Liability. Wavecrest SPECIFICALLY DISCLAIMS ALL OTHER REPRESENTATIONS, CONDITIONS, OR WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTY OR CONDITION OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. ALL OTHER IMPLIED TERMS ARE EXCLUDED. IN NO EVENT WILL WAVECREST BE LIABLE FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OF OR INABILITY TO USE THE SOFTWARE, WHETHER OR NOT WAVECREST MAY BE AWARE OF THE POSSIBILITY OF SUCH DAMAGES. IN PARTICULAR, WAVECREST IS NOT RESPONSIBLE FOR ANY COSTS INCLUDING, BUT NOT LIMITED TO, THOSE INCURRED AS THE RESULT OF LOST PROFITS OR REVENUE, LOSS OF THE USE OF THE SOFTWARE, LOSS OF DATA, THE COSTS OF RECOVERING SUCH SOFTWARE OR DATA, OR FOR OTHER SIMILAR COSTS. IN NO CASE SHALL WAVECREST'S LIABILITY EXCEED THE AMOUNT OF THE LICENSE FEE PAID BY YOU FOR THE USE OF THE SOFTWARE.

Export Requirements. You may not export or re-export the Software or any copy or adaptation in violation of any applicable laws or regulations.

U.S. Government Restricted Rights. The Software and documentation have been developed entirely at private expense and are provided as Commercial Computer Software or restricted computer software.

They are delivered and licensed as commercial computer software as defined in DFARS 252.227-7013 Oct 1988, DFARS 252.211-7015 May 1991 or DFARS 252.227.7014 Jun 1995, as a commercial item as defined in FAR 2.101 (a), or as restricted computer software as defined in FAR 52.227-19 Jun 1987 or any equivalent agency regulations or contract clause, whichever is applicable.

You have only those rights provided for such Software and Documentation by the applicable FAR or DFARS clause or the Wavecrest standard software agreement for the product.

	Purpose and Organization of this Manual	xiii
SECTION I	SIGNAL INTEGRITY ANALYZER QUICK SETUP AND MEASURE	. 1
	Accessories	
	QUICK SETUP AND SIMPLE MEASUREMENT OF IO MHZ CALIBRATION SIGNAL	
	Selection of a Measurement Tool	
	TURNING ON THE IO MHZ SQUARE WAVE	
	Taking a Measurement	-
SECTION 2	FRONT AND BACK PANEL DESCRIPTIONS	. 7
	FRONT PANEL DESCRIPTION	. 7
	Back Panel Description	. 11
SECTION 3	COMPLETE SETUP OF THE SIA	. 13
	INSPECTION	. 13
	Connecting Power	. 14
	Connecting a Pointing Device	. 15
	Connecting the Keyboard	. 15
	Attaching Peripheral Devices	
	Connecting an External Monitor	
	Connecting a GPIB Cable	
	Connecting to the Network Interface Card	
	Connecting and Installing a Printer	. 28
SECTION 4	GigiView TM Software	29
	Using GigiView	
	Getting Started Wizard	
	Menu Bar Tool Pull-down Menu	
	Edit Pull-down Menu	
	Action Pull-down Menu	
	Calibration Pull-down Menu	
	Macro Pull-down Menu	
	Display Pull-down Menu	. 33
	View Pull-down Menu	
	Accessories Pull-down Menu	
	Help Pull-down Menu	. 34
	Toolbar	. 35
	Initial Dialog Bar	. 36
	Dialog Bars	. 37
	MEASUREMENT TOOLS	
	Oscilloscope Tool	
	Applications - Overview	
	Making an Oscilloscope Measurement - Setup Directions	
	INTERPRETING OSCILLOSCOPE VIEWS (PLOTS)	
	Time View with Eye Mask Enabled	
	BATHTUB VIEW	
	SUMMARY VIEW	
	Oscilloscope Theory of Operation	-

SECTION 4A	CLOCK TOOLS
	CLOCK ANALYSIS HISTOGRAM TOOL – APPLICATIONS
	Making a Clock Analysis Measurement - Setup Directions 50
	Interpreting Histogram Tool Views (Plots)
	Oscilloscope View
	Ніstogram View 52
	Total Jitter View
	FFT VIEW
	Clock Analysis theory 55
	HISTOGRAM TOOL – APPLICATIONS
	Making an Histogram Measurement - Setup Directions
	Interpreting Histogram Tool Views (Plots)
	Ассим View 59
	Maxi View
	Ватнтив View
	SUMMARY VIEW
	Ніstogram Theory 64
	HISTOGRAM TOOL EXAMPLES
	Single-Mode Histogram
	Bimodal Histogram - Equal Heights
	Bimodal Histogram - Unequal Heights
	HIGH FREQUENCY MODULATION ANALYSIS (HFMA) TOOL - APPLICATIONS 69
	Making an HFMA Measurement - Setup Directions
	Interpreting HFMA Tool Views (Plots)
	I-SIGMA VIEW
	Реак-Реак View
	FFT <i>N</i> -сLоск View
	FFT I-clock View
	Зоммакт view
	STRIP CHART TOOL
	Making a Strip Chart Measurement - Setup Directions
	INTERPRETING STRIP CHART TOOL VIEWS (PLOTS)
	Ave/Max/Min View
	Summary View
	Strip Chart Theory
	2 ND ORDER PLL ANALYSIS TOOL
	Making a PLL Analysis Measurement - Setup Directions
	INTERPRETING PLL ANALYSIS TOOL VIEWS (PLOTS)
	I-SIGMA PLOT
	PLL Transfer Plot
	BODE PLOT
	Poles and Zero Plot
	Summary Plot
	PLL Analysis Theory

	3 [№] Order PLL Analysis Tool	
	Making a 3 rd Order PLL Analysis Measurement - Setup Directions .	
	INTERPRETING PLL ANALYSIS TOOL VIEWS (PLOTS)	
	I-SIGMA VIEW	
	Power Spectral Density (PSD) View PLL Transfer View	
	PLL TRANSFER VIEW Phase Error Transfer Function View	
	Bode Plot View	
	Poles and Zero View	
	Summary Plot	
	3 rd Order PLL Analysis Theory	. 95
SECTION 4B	OTHER CLOCK TOOLS	. 96
	STATISTICS TOOL	. 97
	LOW FREQUENCY MODULATION ANALYSIS (LFMA) TOOL	. 98
	Making a LFMA Measurement - Setup Directions	. 98
	INTERPRETING LFMA TOOL VIEWS (PLOTS)	
	Time View	
	FFT I-CLOCK VIEW	100
	Summary View	101
	LFMA THEORY	102
	Phase Noise Tool	103
	Making a Phase Noise Measurement - Setup Directions	103
	INTERPRETING PHASE NOISE TOOL VIEWS (PLOTS)	104
	FFT View	104
	Summary View	105
	Phase Noise Theory	
		107
	Making a Locktime Measurement - Setup Directions	108
	INTERPRETING LOCKTIME TOOL VIEWS (PLOTS)	
	Time View	
	FFT VIEW	-
	I-SIGMA VIEW	
	Peak-Peak View Summary View	
	CYCLE-TO-CYCLE TOOL	
	Making a Cycle-to-Cycle Measurement - Setup Directions	
	INTERPRETING CYCLE-TO-CYCLE TOOL VIEWS (PLOTS)	
	NORM ADJACENT VIEW	
	Acum Cycle-to-Cycle View Maxi Cycle-to-Cycle View	-
	BATHTUB	
	Summary View	
	CYCLE-TO-CYCLE THEORY	
	DRCG TOOL - APPLICATIONS	
	Making a DRCG Measurement - Setup Directions	
	INTERPRETING DRCG TOOL VIEWS (PLOTS)	
	JITTER PLOT VIEW	
	DRCG SUMMARY VIEW	
	DRCG THEORY	127

	SPREAD SPECTRUM CLOCK TOOL 129	•
	Making a Spread Spectrum Measurement - Setup Directions 129	9
	INTERPRETING SPREAD SPECTRUM TOOL VIEWS (PLOTS))
	Histogram View)
	I -Sigma View 131	1
	Spread Spectrum Summary View	1
	Spread Spectrum Clock Theory	3
SECTION 4c	DATA TOOLS	5
	KNOWN PATTERN WITH MARKER TOOL - APPLICATIONS	3
	Making a KPWM Measurement - Setup Directions	7
	Interpreting Known Pattern with Marker Tool Views (Plots) 138	3
	DCD + ISI HISTOGRAM VIEW	3
	DCD + ISI vs. Span View	9
	I -Sigma View 140)
	FFT View 141	1
	Ватнтив View 142	2
	Summary View	3
	KPWM THEORY 144	1
	Random Data with Bit Clock Tool	7
	Making a RDBC Measurement - Setup Directions	3
	Interpreting Random Data with Bit Clock Tool Views (Plots) 149	9
	Histogram View	9
	Probability Histogram View)
	Ватнтив View	1
	Summary View	2
	RDBC THEORY	3
	Random Data No Marker Tool	7
	Making a RDNM Measurement - Setup Directions	3
	Interpreting RDNM Tool Views (Plots)	9
	DCD + ISI VIEW	
	I -Sigma View	_
	FFT VIEW	1
	Ватнтив View	
	Summary View	
	RDNM THEORY	1
	KNOWN PATTERN WITH BIT CLOCK AND MARKER TOOL	5
	Making a KPBC Measurement - Setup Directions	5
	Interpreting KPBC Tool Views (Plots)	
	Total Histogram View	
	DCD + ISI HISTOGRAM VIEW	
	DCD + ISI vs. Span View	
	I -Sigma View	
	FFT View	
	Ватнтив View	
	Summary View	
	KPBC THEORY	
		-

SECTION 4D	DATA STANDARDS TOOLS	177
	PCI EXPRESS GEN2 SOFTWARE CLOCK RECOVERY (CR) TOOL	177
	Making a PCIX Hardware CR Measurement - Setup Directions	178
	Interpreting PCIX Hardware CR Views (Plots)	179
	Oscilloscope View	179
	Transition Eye View	180
	De-emph Eye View	
	DCD + ISI HISTOGRAM VIEW	181
	DCD + ISI vs. Span View	-
	I-Sigma vs. Span View	
	FFT VIEW	
	BATHTUB VIEW	
	Summary View	183
	PCI EXPRESS I. I SOFTWARE CLOCK RECOVERY (CR) TOOL	
	Making a PCIX Software CR Measurement - Setup Directions	
	INTERPRETING PCIX SOFTWARE CR VIEWS (PLOTS)	
	Oscilloscope View	
	Trans Eye View	
	De-emph Eye View	
	Median to Maximum histogram View	
	DCD + ISI HISTOGRAM VIEW	
	DCD + ISI vs. Span Histogram View	
	I-Sigma vs. Span View	
	Bathtub Curve View	190
	PCI EXPRESS 1.1 CLOCK ANALYSIS TOOL	191
	PCI Express 1.Oa Tool	
	Making a PCI Express I.Oa Measurement - Setup Directions	193
	INTERPRETING PCI EXPRESS VIEWS (PLOTS)	194
	Oscilloscope View	194
	Trans Eye View	195
	De-emphasized View	
	Total Histogram View	
	Bathtub Curve View	
	SUMMARY VIEW	
	PCI Express Theory	199
	FIBRE CHANNEL COMPLIANCE TOOL	
	Making a Fibre Channel Measurement - Setup Directions	-
	Interpreting Fibre Channel Tool Views (Plots)	
	OSCILLOSCOPE VIEW	
	DCD + ISI HISTOGRAM VIEW	
	DCD + ISI vs. Span View	
	I-SIGMA VIEW	
	BATHTUB VIEW	
	SUMMARY VIEW	
	Fibre Channel Theory	206

	SERIAL ATA II HARDWARE CLOCK RECOVERY (CR) TOOL	207
	Making a SATA II Hardware CR Measurement – Setup Directions .	208
	Interpreting SATA II Hardware CR Tool Views (Plots)	209
	Histogram View	209
	Eye Diagram View	209
	Bathtub Curve View	210
	Summary View	210
	SERIAL ATA II SOFTWARE CLOCK RECOVERY (CR) GEN I X-GEN2X TOOL	211
	Making a SATA II Software CR Measurement – Setup Directions .	211
	Interpreting SATA II Software CR Tool Views (Plots)	212
	Oscilloscope View	212
	DCD + ISI Histogram View	213
	DCD + ISI vs. Span View	213
	I-Sigma View	214
	FFT VIEW	214
	Bathtub Curve View	215
	Summary View	215
	SERIAL ATA I.O TOOL	217
	Making a Serial ATA Measurement - Setup Directions	
	INTERPRETING SERIAL ATA TOOL VIEWS (PLOTS)	217
	Jitter vs. Span View	218
	Histograms View	218
	Summary View	218
	Serial ATA 1.0 Theory	219
	InfiniBand Tool	221
	Making an InfiniBand Measurement - Setup Directions	
	Interpreting InfiniBand Tool Views (Plots)	
	Histogram View	
	Eye Diagram View	
	Ватнтив	
	Summary View	
SECTION 4E	CHANNEL-TO-CHANNEL TOOLS	
	Propagation Delay and Skew Tool	225
	Making a Propagation Delay Measurement - Setup Directions	
	Interpreting Propagation Delay and Skew Tool Views (Plots)	
	Accumulated Histogram View	
	Maxi Histogram View	
	Bathtub Histogram View	
	Propagation Delay and Skew Theory	
	DATA BUS TOOL	
	Making a Data Bus Measurement - Setup Directions	
	INTERPRETING DATA BUS VIEWS (PLOTS)	
	Data Histogram View	
	Data Bathtub View	
	CLOCK HISTOGRAM VIEW	
	CLOCK BATHTUB VIEW	
	DATA BUS SUMMARY VIEW	
	Data Bus Theory	238

	LOCKTIME TOOL	
	Making a Locktime Measurement - Setup Directions	
	INTERPRETING LOCKTIME VIEWS (PLOTS)	
	TIME VIEW	
	FFT View	
	I-Sigma View	
	Рк-Рк View	
	Summary View	
	Locktime Theory	
SECTION 4F	HELP TOOLS	
SECTION 4G	OTHER TOOLS	
	JITTER GENERATOR	
	Switch Matrix	253
	Arm Generator	
	Optical Interface	
	Pattern Marker (PM50)	
	Folded Eye Diagram	
	COMPOSITE PLOT TOOL	
APPENDIX A	MACRO OVERVIEW	
APPENDIX B	TAILFIT [™] THEORY	
APPENDIX C	CALIBRATION	
APPENDIX D	SPECIFICATIONS AND MAINTENANCE	
APPENDIX E	CLOCK RECOVERY OPTION	297
APPENDIX F	Remote <i>GigaView</i> Installation	299
GLOSSARY OF	TERMS	303

This page intentionally left blank.

The purpose of this manual is to provide the user with a quick overview of the SIGNAL INTEGRITY ANALYZER (SIA) and *GigiView* TM software.

Parts of this manual have been compiled from the online Help system included with the *GigiView* software. Some areas will appear different due to the presentation and layout format of the Help system versus the hard copy manual format. It is recommended that this manual be used as a supplement to the online Help system and to the Quick Reference Guides included with the SIA. Parts of the manual may differ from the software appearance due to changes and modifications of the software.

In general, this manual is an overview of the functions and operation of the **SIA** and *GigiView* software. It is assumed that the user has some familiarity with test equipment such as signal generators and oscilloscopes as well as the terminology involved with their usage.

The manual has been organized as follows:

SECTION I - SIA QUICK SETUP AND MEASURE

This section helps the user to quickly set up the instrument and take a simple Histogram measurement using the 10MHz Calibration OUT signal.

SECTION 2 - FRONT AND BACK PANEL DESCRIPTIONS

This section describes the front and back panel operation of the instrument.

SECTION 3 - COMPLETE SETUP OF THE SIA

This section shows the user how to inspect and fully set up the SIA including accessories and peripherals.

SECTION 4 – GigiView Software

This section describes the basic controls and features of *GigiView* including the setup of all measurement tools.

APPENDIX A contains an overview of GigiView Macro features including detailed examples of each Macro command.

APPENDIX B contains a detailed explanation of TailFit[™] theory.

APPENDIX C describes the calibration options of the SIA.

APPENDIX D lists the SIA performance and maintenance specifications.

APPENDIX E describes the Clock Recovery option of the SIA.

APPENDIX F describes the installation of Remote GigiView.

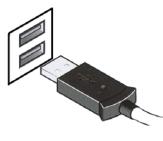
GLOSSARY contains detailed definitions of menu selections, functions, dialog bar selections and jitter related terminology.

This page intentionally left blank.

This section helps the user to quickly set up the *WAVECREST* SIGNAL INTEGRITY ANALYZER (SIA) and take a simple measurement using the 10MHz **Calibration OUT** signal. In addition, this section will assist the user in calibrating the **SIA**. The accessories included with the unit are listed below.

ACCESSORIES

- □ Keyboard
- □ Pointing device (mouse)
- □ Power cord
- \Box Two (2) 50 Ω coaxial cables with SMA connectors
- □ SIA User's Guide and Reference Manual
- □ SIA GPIB Programming Guide
- **u** Two (2) SMA Quick Connect adapters for calibration (minimum 500 uses)


QUICK SETUP AND SIMPLE MEASUREMENT OF IO MHZ CALIBRATION SIGNAL

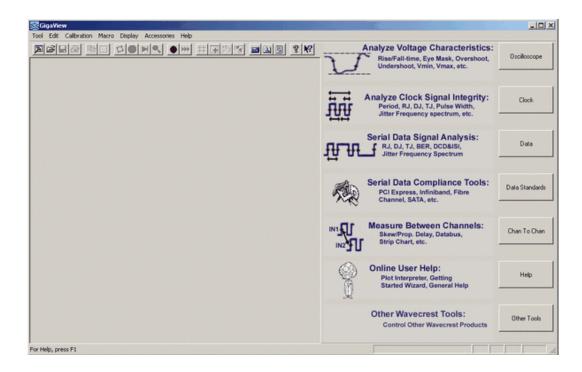
This section will show the user how to:

- Attach the included keyboard, mouse and power cord to the SIA
- Attach a coax cable to an input channel and the Calibration OUT signal
- Open a *GigaView* measurement tool

The following steps will show the user how to attach the keyboard, mouse, coax cable and power cord.

□ Plug keyboard USB cable connector into one of the two USB ports on the front of the SIA.

□ Plug mouse USB cable connector into remaining USB port on the front of the SIA.


- □ Attach coax cable to the (Channel 1) **IN 1** connector. Ensure there is a tight connection.
- □ Attach other end of coax cable to the Calibration OUT connector. Ensure there is a tight Connection (~7-9 in/lbs).

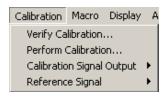
- □ Plug female end of power cord into power cord connection on back of unit.
- □ Plug male end of power cord into an appropriately grounded 115 VAC source.
- **u** Turn on power by pushing the power button at the bottom right-hand corner of the front panel.

After a few minutes, the opening view of GigaView's work area will be displayed.

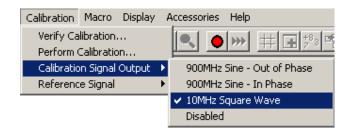
SELECTING A MEASUREMENT TOOL

The following steps will select the Histogram Tool using the Dialog Bar.

From the opening view:

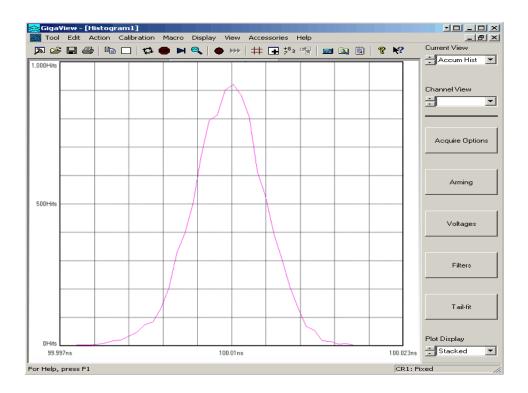

- Click on Clock to access the Clock Tools Dialog Bar.
- Click on
 Histogram to open the Histogram Tool.

😹 Giga¥iew - [Histogram1]	
🇱 Tool Edit Action Calibration Macro Display View Accessories Help	_ & ×
🗖 😂 🖬 🎒 🗈 🗆 🏟 🌑 🛤 🔍 🌒 >>> 井 🖬 🕫 🔤 🔍 🗒 🤶 💖	Current View
Accumulated Histograms	Accum Hist 💌
	Channel View
	Acquire Options
	Arming
	Similing
	Voltages
	F 1
	Filters
	1
	Tail-fit
	Plot Display
	Stacked 💌
For Help, press F1 CR1:	Fixed


TURNING ON THE IOMHZ SQUARE WAVE

The following steps will show the user how to select and enable the Calibration Signal Output signal.

□ Click on the Calibration pull-down menu of the main Menu Bar.

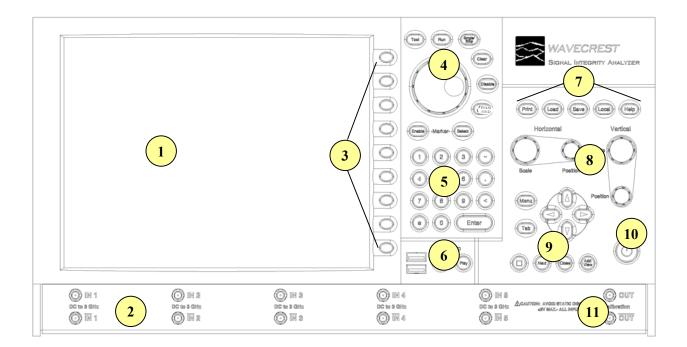

□ Select the 10MHz option in the pull-down menu of the dialog box.

The **Calibration OUT** connection will now be outputting a 10MHz square wave.

TAKING A MEASUREMENT

□ Click the ▶ button (Single/Stop) on the tool bar to view a histogram of the 10MHz square wave.

Note: When a tool is first opened, a pulsefind is automatically performed when a measurement is taken. Should any parameter setting or input signal changes occur, a pulsefind should be performed prior to taking another measurement.


If an error is received, ensure all connectors are tight and re-activate the 10MHz calibration signal as described in the previous instructions.

Redo a Pulsefind () and then take another Single measurement ().

This page intentionally left blank.

FRONT PANEL DESCRIPTION

This section describes the front panel operation of the SIA.

SIA Front panel

Front Panel Display - Flat LCD color display for viewing *GigaView* tools/measurements.

Channel Card Inputs - Measurement channels: up to 10 single-ended or differential input channel cards can be configured.

Tool/Field Selection Buttons - Buttons correspond to adjacent fields/buttons on LCD. Pressing button activates corresponding field/button.

1

2

3

Tool Function Buttons - Used for displaying tool selections, starting/stopping measurements, clearing current display measurements, disabling all tools and enabling markers.

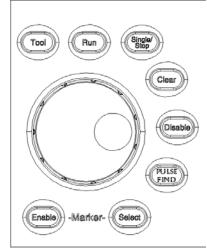
Pressing on this button will display *GigaView* tool buttons on the display. Pressing on the corresponding **Tool/Field Selection** button will activate the desired measurement tool.

Continuously acquire new measurements. Measurements will be acquired until either the **Single/Stop** button is pressed or an error occurs.

Acquires a single measurement. Also used to stop a series of measurements from being taken after the **Run** button is pressed.

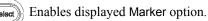
Dial - Used to increment/decrement values of active field or scroll through choices of active field.

Clears active window of data.


Disable

Enable

6


8

Stops all running tools simultaneously.

Performs a pulse find. Performs a peak-to-peak voltage measurement and sets the voltage threshold to be used for timing measurements.

Scrolls through Marker options by displaying current selection on window. Selections include: Horizontal markers only, Vertical markers only, both Horizontal and Vertical markers or no markers.

Keypad - Keypad is used for entering values into active fields. The "<" button is used as a backspace button to erase the highlighted number or the number immediately to the left of the cursor.

USB Connector/Macro Buttons - USB connectors are for keyboard and pointing device accessories. Macro buttons are for recording and playing macros.

USB Connectors - For connecting included USB accessories or any other hot swappable peripheral devices to instrument. An additional USB connection is located on the back panel. If connecting a USB device other than those provided by *WAVECREST*, make sure the device driver is available for installation.

Press on the **Rec.** button to begin recording a series of steps from the front panel, mouse or keyboard that can then be replayed using the **Play** button.

Press on the **Play** button to playback a series of steps that were previously recorded from the front panel, mouse or keyboard.

 Macro	
Rec. (Play)	

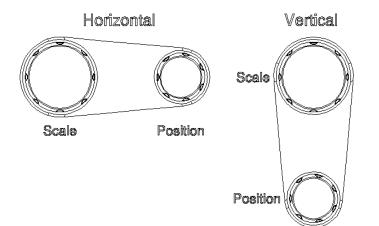
Performs a pulse find. Performs a peak-to-

File Output/Input Function Buttons - Used for storing or loading measurement data, tool configurations and data patterns.

Print

Press on the **Print** button to print current tool window plot.

Press on the **Load** button to load previously saved plots, configurations or settings.


Save

Press on the **Save** button to save plots, configurations or settings.

- Press on the Local button to regain front panel system control from GPIB instrument control.
- Press on the **Help** button to activate the online Help system.

8 Scaling and Position Control Dials - Adjusts x- and y-axis viewing position and scaling.

Menu Navigation and Display Control Buttons - Activates pull-down menus of *GigaView* software and allows navigation/selection of menu choices and online Help system. Display control buttons scroll through open tools, add or close tools or clear all tools.

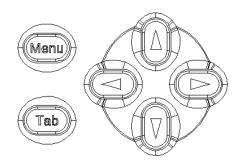
Menu

Press on the **Menu** button to activate the pull-down menus of the *GigaView* Menu bar.

Tab

Press on the **Tab** button to jump from field to field in the active *GigaView* tool.

Arrow buttons - Press on an arrow to move the highlighted cursor area up or down the active pull-down menu or to the adjacent pull-down menu.


Pressing on **Clear** button clears active tool of any measurements or plots.

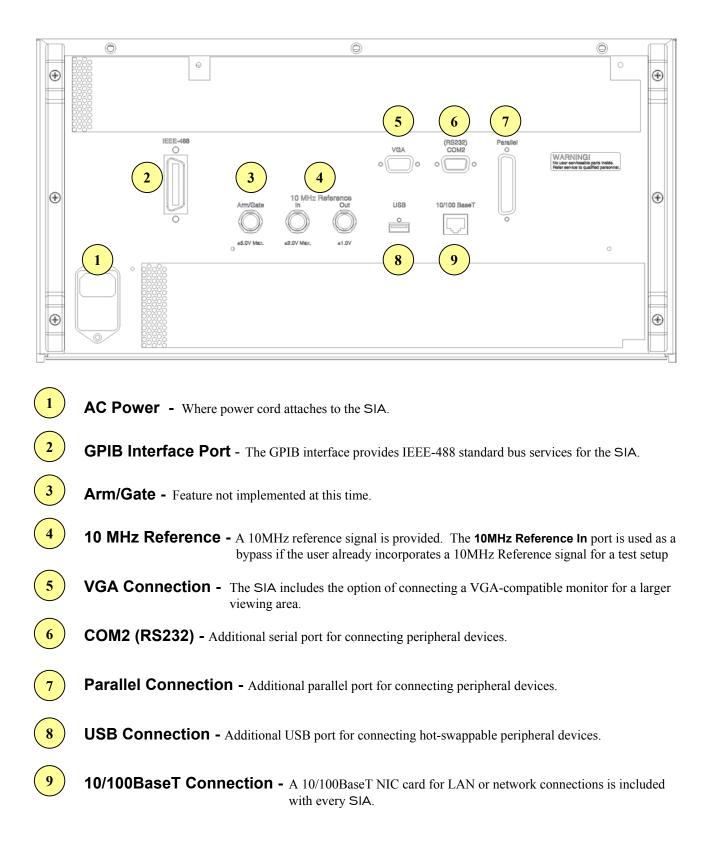
Next

Pressing the **Next** button will switch to the next tool or view.

Pressing on the **Close** button closes the active tool

Pressing the **Add View** button will open a new window of the active tool.

Power Button - Turns on/off SIA.



10

Calibration OUT - Supplies calibration and reference signals for calibrating the SIA.

BACK PANEL DESCRIPTION

This section describes the back panel operation of the SIA.

This page intentionally left blank.

This section shows you how to inspect and fully set up the SIA including the attachment of accessories and peripheral devices. The following areas are covered in this section:

- Inspection
- Connecting power
- Connecting included accessories
- Connecting peripheral devices
- Verify instrument is taking measurements

INSPECTION

- Inspect the shipping box for damage.
 If the box is damaged, retain it until the contents and instrument have been checked for damage and proper operation.
- Check for accessories.
 - □ Keyboard
 - □ Pointing device (mouse)
 - □ Power cord
 - \Box Two (2) matched 50 Ω coaxial cables with SMA connectors
 - **u** Two (2) SMA Quick Connect calibration adapters (Minimum 500 uses)
 - □ SIA User's Guide and Reference Manual and 3-ring binder
 - □ SIA GPIB Programming Guide and 3-ring binder
 - □ SIA LabVIEW Programming Guide and software drivers CDROM
 - GigaView Quick Reference Guides and 3-ring binder

If the contents are incomplete or damaged, contact *WAVECREST CORPORATION* Customer Service: 1-800-733-7128

□ Inspect the instrument.

If there is mechanical/physical damage, or if the instrument does not power up or boot up properly, notify *WAVECREST CORPORATION*.

If the shipping box is damaged, or the cushioning materials show signs of stress, notify the shipping carrier as well as the *WAVECREST CORPORATION* office. Keep the shipping materials for the carrier's inspection. *WAVECREST CORPORATION* will arrange for repair or replacement at their option.

CONNECTING POWER TO THE SIA

The power supply of the SIA operates with a line voltage in the range of 100 to 230VAC at 50-60 HZ line frequency.

□ Position the instrument where it will have sufficient clearance for airflow around the back and sides. A minimum of 2-3 inches clearance is required for the back and sides.

- □ Connect the power cord to the rear of the instrument and then to an ac outlet. Ensure the outlet has a protective earth ground contact.
- NOTE: The power supply fan will automatically turn on when power is connected to the instrument.

0

CONNECT A POINTING DEVICE/MOUSE

The pointing device is included with the **SIA** but using it is optional. All operations of the instrument, except for entering alpha file names, can be done through the front panel buttons and knobs. See Section 2 for a complete description of front and back panel operations.

If using a mouse other than the one supplied with the instrument, ensure the device driver is available for installation.

Plug the pointing device USB connector into one of the two front USB ports (an additional USB connector is located on the back panel).



CONNECTING THE KEYBOARD

The keyboard is included with the **SIA** but using it is optional. All operations of the instrument, except entering alpha file names, can be done through the front panel buttons and knobs. See Section 2 for an explanation of all front panel operations.

If using a keyboard other than the one supplied with the instrument, ensure the device driver is available for installation.

Plug the keyboard USB connector into the remaining front USB port (an additional USB connector is located on the back panel).

ATTACHING PERIPHERAL DEVICES TO THE SIA

CONNECTING AN EXTERNAL MONITOR

The SIA has the option of connecting a VGA-compatible monitor for a larger viewing area. Ensure the device driver is available for installation.

Power down the SIA.

- □ Attach the monitor cable to the VGA connection on the back panel of the SIA. Tighten the retaining screws.
- Dever up the monitor before powering up the SIA.
- \Box Power up the SIA.
- * If the system requires a new monitor driver, select the files from the c:\win98 directory (see procedure below)
- □ Select 'Next' to verify the installation procedure.
- □ Select 'Search for the best driver for your device.'
- □ Specify a location: c:\win98

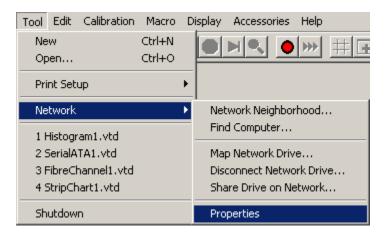
Windows will detect the driver

- □ Select 'Next' to install the driver
- □ Select 'Finish'

CONNECTING A GPIB CABLE TO THE SIA

□ Attach the GPIB cable connector to the GPIB (IEEE.488) interface card connector on the back panel of the SIA. Tighten the thumbscrews.

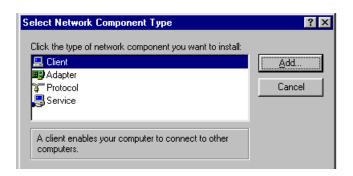
CONNECTING TO THE NETWORK INTERFACE CARD (NIC)


A 10/100BaseT NIC card is included with every SIA. Consult with your company's information systems personnel to ensure your LAN system is compatible with the SIA network card and to establish a local network connection.

□ Plug the RJ45 cable connector into the RJ45 connection on the back panel.

CONNECTING TO A MICROSOFT® NETWORK

- □ Connect the network cable to the RJ45 connector of the SIA.
- **D** Power up the **SIA** (this will take a few minutes).
- □ Click **Tool** on the *GigaView* menu bar.
- □ Point to Network and then select Properties.



The Network properties dialog box will be displayed.

Network	? 🗙
Configuration	
The following <u>n</u> etwork components are installe	d:
Intel(R) PR0/100+ Management Adapter	
Network	×
Add Rema	Your network is not complete. Do you want to continue?
Primary Network Logon: Windows Logon	<u>Yes</u> <u>N</u> o
<u>File and Print Sharing</u>	
Description	
OK	Cancel

- □ Click <u>Y</u>es to continue.
- Click <u>A</u>dd in the Network Properties dialog box.

The Select Network Component Type dialog box will be displayed.

□ Select Client and click <u>A</u>dd....

The Select Network Client dialog box will be displayed.

Select Network Client	×
	int that you want to install, then click OK. If you have this device, click Have Disk.
Manufacturers:	Network Clients:
📃 Banyan	🖴 Client for Microsoft Networks
📇 Microsoft	Client for NetWare Networks
Novell	E Microsoft Family Logon
	<u>H</u> ave Disk
	OK Cancel

- □ Select 'Microsoft' for the Manufacturers.
- □ Select 'Client for Microsoft Networks' for the Network Clients.
- Click OK.

The complete Network properties dialog box will be displayed.

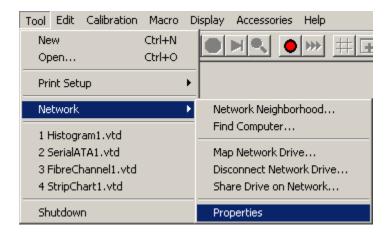
Network ?
Configuration Identification Access Control
The following network components are installed:
Elient for Microsoft Networks Intel(R) PR0/100+ Management Adapter TCP/IP
Add Remove Properties Primary Network Logon: Client for Microsoft Networks
<u>F</u> ile and Print Sharing
Description
OK Cancel

- Click OK on the Network dialog window
- Click <u>Yes</u> to restart the system.

Once the system is running, enter: (Obtain these from your Network Administrator)

<u>U</u>ser name:

Password:


Domain: (once you enter this value it will be stored automatically)

Enter Network	? ×		
	Enter your network password for Microsoft Networking.		ОК
12	<u>U</u> ser name: <u>P</u> assword:	[Cancel
	<u>D</u> omain:		
		,	

- □ Click OK
- Important: Consult your Network Administrator regarding virus protection software and security issues before connecting to the network. Virus software will need to be "Pushed" onto the SIA. Also find out if the network is using static or dynamic IP addresses.

CHANGING THE NETWORK DOMAIN NAME

- □ Click Tool on the *GigaView* menu bar.
- □ Point to Network and then select Properties.

The Network properties dialog box will be displayed.

Network	? ×
Configuration Identification Access Control	
The following network components are installed:	
E Client for Microsoft Networks III Intel(R) PR0/100+ Management Adapter TCP/IP	
Add Remove Properties Primary Network Logon: Client for Microsoft Networks	s
<u>File and Print Sharing</u>	
Description The Client for Microsoft Networks enables you to connect other Microsoft Windows computers and servers and use t files and printers shared on them.	
ОК С	ancel

□ Select Client for Microsoft Networks and select Properties.

The Client for Microsoft Networks Properties dialog box will be displayed.

Client for Microsoft Networks Properties	?×			
General				
Logon validation Log on to Windows NT domain When you log on, your password will be verifi on a Windows NT domain.	ied			
Windows NT domain: Domain name here				
Network logon options				
C Quick logon				
Windows logs you onto the network, but netw drives are not reconnected until you use then				
C Logon and restore network connections				
When you log onto the network, Windows verifies that each network drive is ready for u	se.			
ОК	Cancel			

- □ Check the <u>L</u>og on to Windows NT domain check box.
- Enter the network domain name in the <u>W</u>indows NT domain: text box.
- □ Select either option for the Network logon options.
- □ Select OK when finished.
- □ Select OK on the Network Properties dialog box.
- Click OK if prompted for the Windows 98 CD.

- □ Select C:\Win98 from the Copy files from: drop down box.
- □ Click OK
- Click <u>Yes</u> to restart the system.

CHANGING THE SIA IP ADDRESS

- Click Tool on the *GigaView* menu bar.
- Depart to Network and then select Properties.

Tool	Edit	Calibration	Macro	D	isplay	Accessor	ries	Help	
Ne Op	w ien		Ctrl+N Ctrl+O			M	•	}	# C
Pri	nt Seti	ир		Þ					
Ne	twork			۲	Net	work Neig	hbor	hood.	
1 F	listogr	am1.vtd			Fine	d Compute	er		
2 9	SerialA	TA1.vtd			Мар	o Network	Driv	e	
3 FibreChannel1.vtd				Disc	connect N	etwo	rk Driv	e	
4 9	StripCh	art1.vtd			Sha	are Drive o	in Ne	twork.	
Sh	utdow	n			Pro	perties			

The Network properties dialog box will be displayed.

Network ?	×
Configuration Identification Access Control	
The following network components are installed:	
Client for Microsoft Networks PR0/100+ Management Adapter	
ТСРИР	
,	
Add Remove Properties	
Primary Network Logon:	
Client for Microsoft Networks	
<u>File and Print Sharing</u>	
Description TCP/IP is the protocol you use to connect to the Internet and	
wide-area networks.	
OK Cancel	

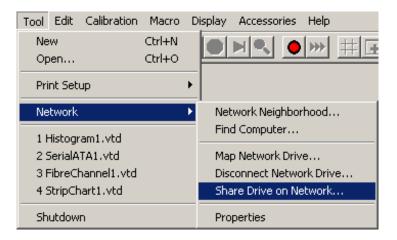
• Select TCP/IP and click on the Properties button.

The TCP/IP Properties dialog box will be displayed.

TCP/IP Properties		? ×								
Bindings	Advanced	NetBIOS								
DNS Configuration	Gateway WINS Conf	figuration IP Address								
If your network doe	An IP address can be automatically assigned to this computer. If your network does not automatically assign IP addresses, ask your network administrator for an address, and then type it in the space below.									
_	address automatically									
Specify an IP	address									
<u>I</u> P Address:										
S <u>u</u> bnet Masł	« <mark></mark>									
	01	K Cancel								

- □ Select <u>Specify an IP address</u>.
- Enter the <u>IP</u> Address and S<u>u</u>bnet Mask.

Modify any other network settings by selecting the appropriate tab.


- □ Select OK when finished to close the TCP/IP Properties Window.
- Click OK <u>if</u> prompted for the Windows 98 CD.

Copying Files		
Source:		
Sca Des	Files	×
	The file 'choosusr.dll' on Windows 98 Second Edition CD-ROM cannot be found.	OK Cancel
	Insert Windows 98 Second Edition CD-ROM in the selected drive, and click OK.	
		<u>S</u> kip File
	Copy files from:	<u>D</u> etails
	c:\win98	

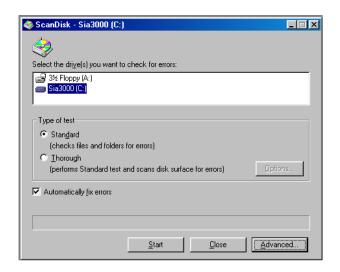
- □ Select C:\Win98 from the Copy files from: drop down box.
- Click OK.
- Click <u>Yes</u> to restart the system.

PERFORMING THE SCANDISK AND DEFRAGMENTATION OF THE LOCAL DISK

- □ Select Tool on the *GigaView* menu bar
- Depart to Network and then select Share Drive on Network...

The local drive properties dialog box will be displayed.

Sia3000 (C:) Propertie	S	<u>? ×</u>
General Tools		
Label: Type: File system:	SIA3000 Local Disk FAT32	
📕 Used space:	601,489,408 bytes	573MB
Free space:	19,409,010,688 bytes	18.0GB
Capacity:	20,010,500,096 bytes	18.6GB
	Drive C	<u>D</u> isk Cleanup
	OK Cance	el <u>Apply</u>


□ Select the Tools tab.

Use the Error-checking status tool first.

□ Select <u>C</u>heck Now...

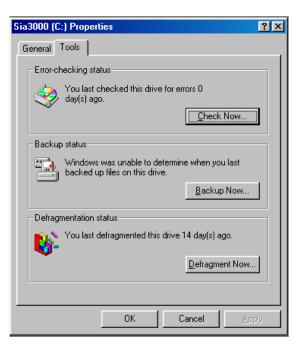
Sia3000 (C:) Properties
General Tools
Error-checking status
You last checked this drive for errors 0 day(s) ago.
Backup status Windows was unable to determine when you last backed up files on this drive. Backup Now
Defragmentation status You last defragmented this drive 14 day(s) ago. Defragment Now
OK Cancel Apply

- □ Select Stan<u>d</u>ard for Type of test.
- □ Select the Automatically <u>fix errors</u> check box
- Select <u>Start</u> to perform the Scandisk

- □ Close the Scandisk results window when complete
- □ Close the Scandisk tool when complete to return to the Tools window

Next, use the Defragmentation status tool.

□ Select <u>D</u>efragment Now...


The Defragmenting Drive C: popup box will be displayed.

👫 Defragn	nenting Drive C	_ 🗆 🗵
	•	
	■ 2% Complete	
*	Stop Pause Sho	w <u>D</u> etails

□ Select <u>Yes</u> to exit Disk Defragmenter when defragmentation is done.

• Select OK to exit the Tools window.

The local disk has now been defragmented and scanned for errors.

Connecting and Installing a Printer

If you have a serial printer, you will need a 9-pin to 25-pin serial printer cable.

□ Attach the 9-pin small "D" connector to the printer output connector labeled COM2 (RS232) on the back panel of the SIA. Tighten the thumbscrews.

If you have a parallel printer, you will need a parallel printer cable.

□ Attach the 25-pin "D" connector to the parallel port.

Once the appropriate printer cable has been attached and the SIA has been turned on,

□ Select Tool/Print Setup/Add Printer from the Menu Bar.

Tool	Edit	Calibration	Macro	D	isplay	Accesso	ories	Help
Ne Op	w ien		Ctrl+N Ctrl+O			M .	•	>>>
Pri	nt Seti	qu		۲	Cor	nfigure Pr	inter.	
Ne	twork			۲	Ad	d Printer.		
1 F	listoar	am1 ytd			Rer	move Prin	ter	

Locate the target printer, whether hooked up locally to the SIA or over a network, through the dialog boxes that appear following the Add Printer selection. Make sure the printer driver is available on a floppy disk or at a network location accessible by you if it is not included on the SIA printer list.

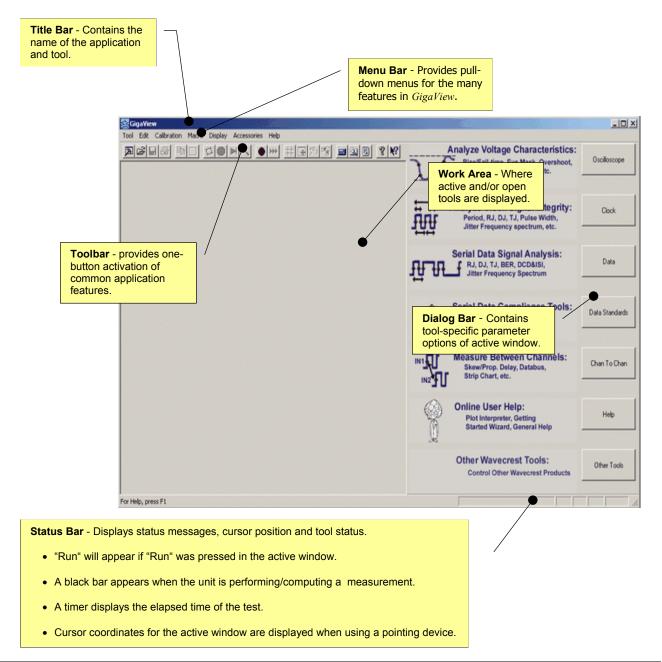
Additional printers can be added, removed or configured through the Tool/Print Setup selection by following the dialog boxes and screen prompts.

INTRODUCING GigaView SOFTWARE

WAVECREST's GigaView software is the latest software package to address the growing needs of the electronics industry for analyzing Signal Integrity. Jitter is a major cause of data signal fidelity loss. *GigaView* software provides the tools necessary to quantify and isolate these and many more timing anomalies.

GigaView software provides one of the most comprehensive jitter analysis software packages on the market today. The Windows[®]-based GUI, Measurement Wizard and online help will enable new users to confidently acquire useful data in seconds. Even inexperienced users will be capable of making measurements of accumulated jitter, low and high frequency modulation and frequency locktime enabling them to characterize and fully understand the performance of their clock signal. Furthermore, the addition of macros allows users to perform routine tasks at the click of a button.

GigaView may be used as a jitter analysis tool for a variety of data communication protocols including Fibre Channel and Gigabit Ethernet. *GigaView* is a comprehensive data analysis package that includes patented algorithms capable of separating total jitter (TJ) into its deterministic jitter (DJ) and random jitter (RJ) components and the capability to predict the long-term reliability of systems and components in seconds.

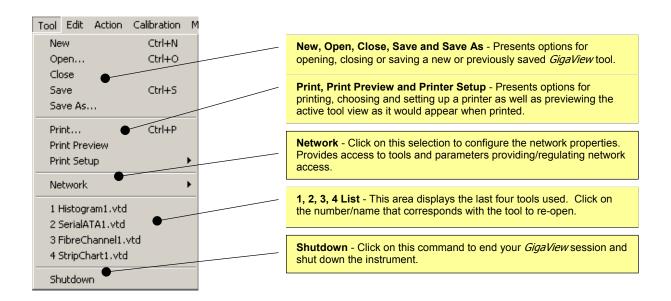

USING GigaView

INTRODUCTION

This section introduces a new user to the basic controls and features of *GigaView* software. Refer to the Help files provided in the *GigaView* software for more detailed information on the functions and features. Other Quick Reference Guides describe each tool in detail, including setup, theory of operation and making measurements.

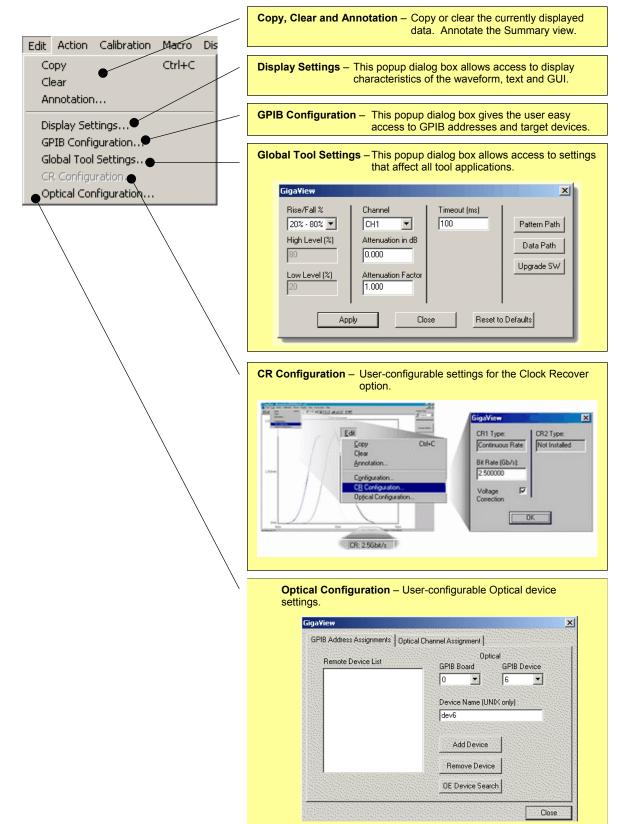
OPENING GigaView

Once *GigaView* is running on the SIA, the screen will be displayed. Access to *GigaView* tools is through the Dialog bar at the right by either clicking on the buttons using a pointing device or pressing the associated button on the front panel. Specific tools (Histogram, High Frequency Modulation, etc.) are described in their respective Tool Overview sections in the online help system or in this User's Guide.

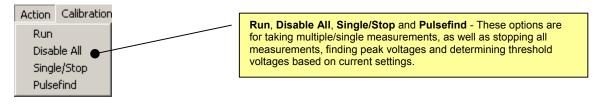

MENU BAR

The Menu Bar is displayed across the top of the application window below the Title Bar. The Menu Bar provides pull-down menus for accessing the many features in *GigaView*.

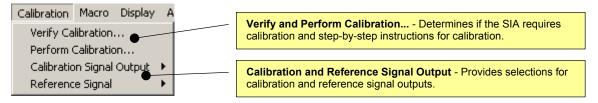
🕵 Giga¥iew - [ClockAnalysis1]								
🔁 Tool	Edit	Action	Calibration	Macro	Display	View	Accessories	Help


TOOL PULL-DOWN MENU

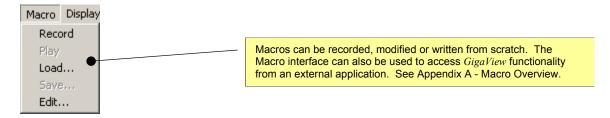
The **Tool** pull-down menu lists options for opening new or previously saved tool configurations, printing the displayed window, connecting to a local area network, recalling the four most recent tools used and closing *GigaView*. See the **Glossary** section for a detailed explanation of each selection.


EDIT PULL-DOWN MENU

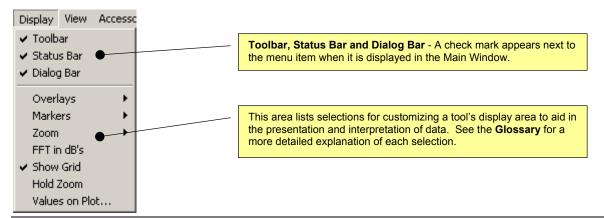
The **Edit** pull-down menu lists options for editing displayed data as well as customizing display/window characteristics.


ACTION PULL-DOWN MENU

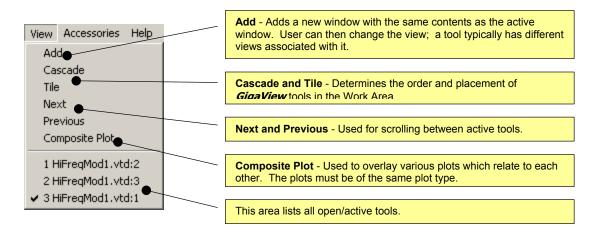
The **Action** pull-down menu lists commands for taking measurements, remote calibration and accessing the Macro feature of *GigaView*. See the **Glossary** for a more detailed explanation of each selection.


CALIBRATION PULL-DOWN MENU

The **Calibration** pull-down menu lists commands for determining if system calibrations are necessary as well as providing methods for those calibrations. This menu also provides access for selecting calibration and reference output signals.


MACRO PULL-DOWN MENU

The **Macro** pull-down menu lists commands for scripting and automating activities performed on a repetitive basis. The Macro interface is based on Microsoft's VBScript language that includes the ability to control program execution using conditional and looping statements. See Appendix B or online Help Topics.


DISPLAY PULL-DOWN MENU

The **Display** pull-down menu lists commands for configuring the Main Window features, Work Area and *GigaView* tool display area. See the **Glossary** for a more detailed explanation of each selection.

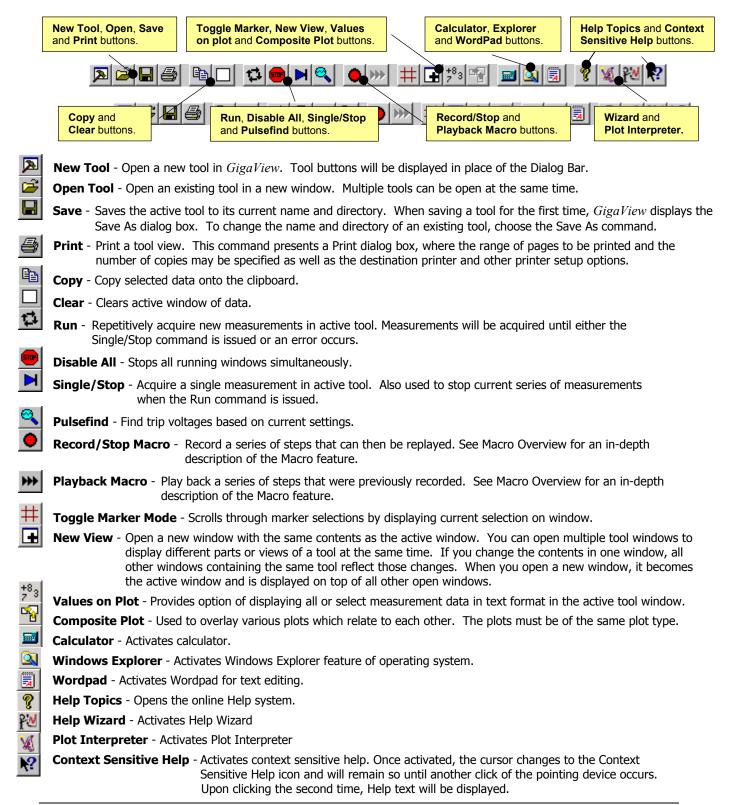
VIEW PULL-DOWN MENU

The **View** pull-down menu lists options for adding a new window with the same contents as the active window, determining the order and placement of *GigaView* tools in the Work Area as well as scrolling between tools. Active tools are displayed at the bottom of the menu and are activated when checked. See the **Glossary** for a more detailed explanation of each selection.

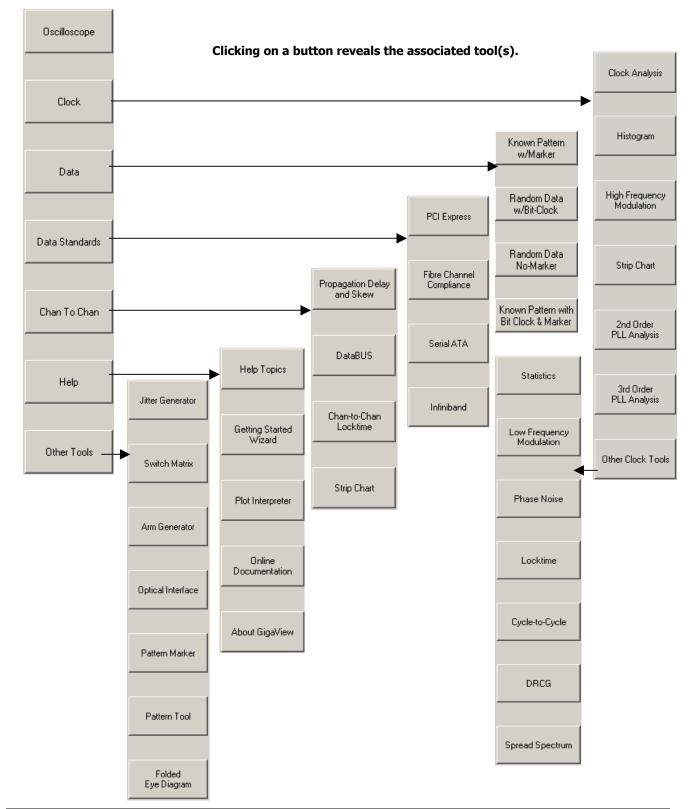
ACCESSORIES PULL-DOWN MENU

The Accessories pull-down menu lists additional system features.

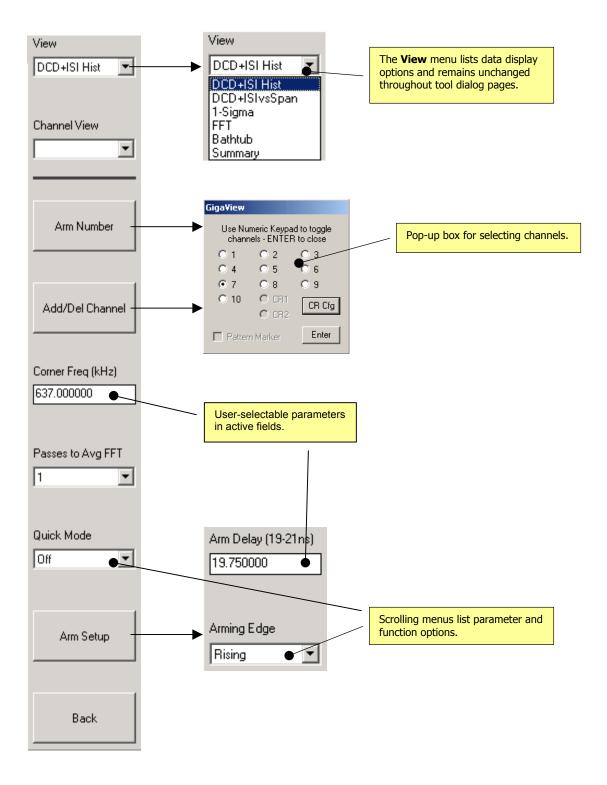
HELP PULL-DOWN MENU


The **Help** pull-down menu provides access to the online help system, version number and technical support phone number.

TOOLBAR


The toolbar is displayed across the top of the application window below the menu bar. The toolbar provides one-button activation for many of the selections listed in the **Menu Bar** pull-down menus such as **New**, **Open**, **Save**, **Run** and **Single/Stop**. See the **Glossary** section for a more detailed explanation of individual buttons.

To hide or display the Toolbar, un-check/check **Toolbar** in the **Display** menu.


INITIAL DIALOG BAR

The initial Dialog Bar (see figure below) displays categories of tools (Clock, Data, Other Tools, etc.). Each category contains one or more analysis tools to choose from. Once a tool is chosen, the Dialog Bar will remain showing various pages of menus to control each tool. These configuration menus change to reflect the selected tool window if more that one tool at a time is open.

DIALOG BARS

Once a measurement tool has been chosen, the **Dialog Bar** displays general and tool-specific parameter selections. Many of the tools have parameters common between them, such as Channel or Arming Mode, while some of the *GigaView* tools have parameters unique to their function. For a detailed explanation of a specific tool's Dialog Bar parameters, see the **Glossary** section at the end of this manual or use the context sensitive online Help system in *GigaView*.

This page intentionally left blank.

MEASUREMENT TOOLS

Oscilloscope - View the waveform

<u>Clock</u> - Single channel measurements

Clock Analysis - Combines different measurement tools.

- Histogram Statistical analysis of measurements such as period, pulse width, rise time, fall time. Includes DJ and RJ separation using TailFit
- High Frequency Modulation View jitter accumulation or the spectral content of jitter.

Strip Chart - Plot histogram statistics at regular intervals defined by the user.

2nd and 3rd Order PLL Analysis - Extract information such as damping factor, natural frequency, input noise level, lock range, lock-in time, pull-in time, pullout range and noise bandwidth.

Other Clock Tools

Statistics - Displays time measurements including frequency and duty cycle

Low Frequency Modulation - Power-up testing of PLL circuits; view low frequency jitter - below 20kHz. Phase Noise - Create phase noise plots.

Locktime - Analyze PLL stabilization time.

- Cycle-to-Cycle Displays a histogram of the difference between two adjacent cycles of a clock.
- DRCG Characterize the effect of the second phase aligner stage of the DRCG on a cycle-by-cycle basis as specified in the Rambus[®] DRCG specification.

Spread Spectrum Clock - Automatically measures SSC effects on signals.

Channel-to-Channel

Propagation Delay and Skew - Histogram of measurement between 2 channels such as prop delay/skew. Data Bus - Characterize single-ended and differential clock and data signals.

Strip Chart - Plot histogram statistics at regular intervals defined by the user.

Data - Advanced clock-to-data analysis and extensive jitter analysis including DJ and RJ separation.

Known Pattern with Marker - Used to show jitter and its components on a data pattern relative to its ideal bit position

Random Data with Bit Clock - Use bit clock as a trigger.

Random Data, no Marker - This tool analyzes a single data signal when there is no bit clock or marker.

Data Standards

PCI Express - Provides both timing and amplitude compliance measurements.

Fibre Channel - Automates measurements and provides pass/fail results.

Serial ATA - Automates jitter generation specification profile measurements and provides pass/fail results. InfiniBand - Automates measurements and provides pass/fail results.

Other Tools - Utilize other WAVECREST products.

Jitter Generator (DTS-550) - Versatile clock generator.

Switch Matrix (DSM-16x) – Extends input capability of instrument.

Arm Generator (AG-100) - Produces a pattern marker from a repeating data pattern.

Optical to Electrical Converter (OE-2) - Converts optical communication signals into electrical signals

Pattern Marker (PM50) - On-board pattern marker; uses SIA channel card to produce pattern marker from a repeating data pattern.

Pattern Tool - Identify, load or save repeating data pattern.

Folded Eye Diagram – Measure mask violations on repeating patterns.

<u>Composite Plot</u> - Overlay related plots. Accessed via the Toolbar (🔛).

This page intentionally left blank.

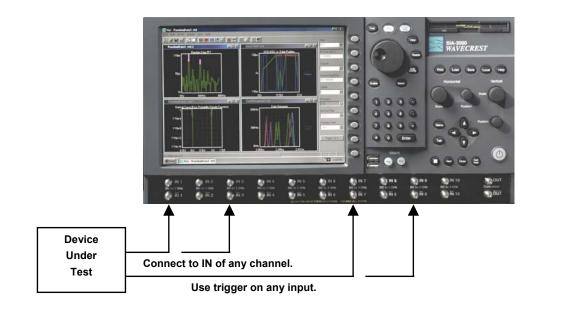
OSCILLOSCOPE TOOL

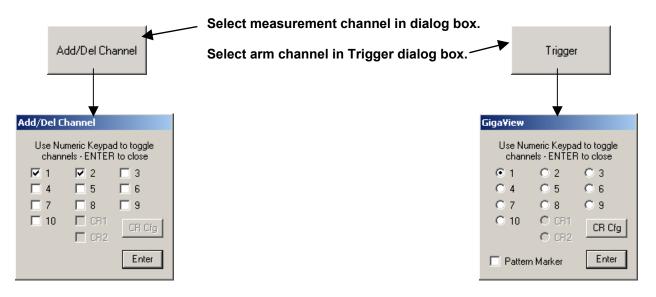
APPLICATIONS

- Display a waveform as voltage vs. time
- Measure voltage parameters of signals
- Measure Rise and Fall time
- Eye mask measurements

OVERVIEW

The Oscilloscope Tool provides the user with a quick and easy graphical display of the signal to be analyzed. The Oscilloscope has many different capabilities. It can display the waveform, measure voltage parameters, and create eye masks.


Using the Oscilloscope Tool is similar to using any other oscilloscope. You can verify the signal using the scope function before analyzing jitter. This eliminates the need to disconnect probes to use a separate scope if the jitter results do not make sense.


MAKING AN OSCILLOSCOPE MEASUREMENT

SETUP DIRECTIONS

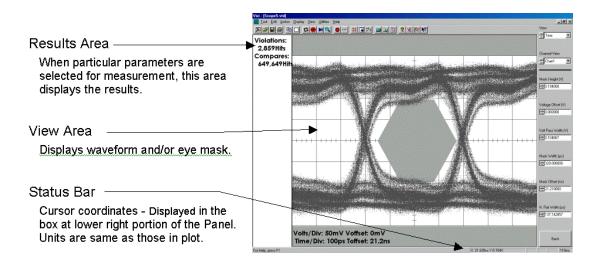
This tool requires a signal connected to any available measurement channel. A trigger signal can be connected to any available channel, or the measurement can be triggered from the measurement channel.

- Verify the proper input signal levels.
- Connect the source to any **IN** channel.
- Connect a trigger to any **IN** channel, add the channel and change the trigger/arm channel (see instructions below). Or, you may select to trigger off of the signal on the measurement channel.
- Press Pulsefind son the Tool Bar.
- Press Single Acquire 🖻 on the Tool Bar.

INTERPRETING OSCILLOSCOPE VIEWS (PLOTS)

- Time Time vs. Voltage including Eye Mask options.
- Bathtub Shows the error probability density plot of a data signal.
- Summary Textual display of Oscilloscope measurements.

TIME VIEW WITH EYE MASK ENABLED


To make an Eye Mask measurement, connect a data signal to one channel and a bit clock to another channel. Set the trigger to be the channel with the bit-clock.

Press Signal Analysis, Eye Mask, then select ON in Enable Eye Mask.

Pressing Show Measures will display the number of samples on the display (Compares) and the number of Violations of the mask regions. This is a toggle, and pressing it again will turn off those values.

Press Zoom to Eye to automatically place the mask in the display. To change the mask position or size, press Mask Setup. This will allow you to configure the mask.

For other configuration and tool settings, refer to the context sensitive help. The help describes the use of each setting.

In Time View, resolution affects the time between measurements. Range affects the time over which measurements are made.

BATHTUB VIEW

Shows the error probability density plot of a data signal.

	Depary Yee Acceptance (64) 	Lanet/Vev
		- I and
dask/titu		Charral View
task Hite:		H_CH1
isk fam:		Takte
antonii. ISB/Str		±0*
Noise In/V Ipening In/V		Ship on Succe
SWV		Marilla
En/V		8.00
Indd idd		To Eros Rate
Brild Int		16.12
10mites		46ar Wide(10)
		- Sulvering
Vats/Div 210m/ Vo Time/Div 50ps Tatt Triager CH2 -8:339	et 24.45ns	Test.

SUMMARY VIEW

The data represent information from the Oscilloscope. This page can be annotated.

Oscilloscope S	ummary	
	Channel1	Channel2
V100%	0.4051∨	0.792∨
V50%	-0.0096V	-0.0186∨
V0%	-0.4243V	-0.8292∨
Vpk-pk	0.8294V	1.6212V
FFT-Fmax	18.559219MHz	150.42735MHz

Each row summarizes voltage measurements for a particular channel.

 $FFT-F_{max}$ reports the tallest peak on the FFT for that channel.

OSCILLOSCOPE THEORY OF OPERATION

There are two different measurement engines in the SIA that perform specific measurements using the most appropriate hardware techniques. The Sampling Oscilloscope uses circuitry optimized for voltage measurements (Amplitude Engine). Timing and Jitter measurements use different internal circuitry optimized for time measurements (Timing Engine). For amplitude measurements and rise or fall time measurements (which are amplitude dependent) the Oscilloscope uses a standard Repetitive Sampling methodology. This allows eye-masks to be created. The time measurements made for the other tools, such as histogram, *are not* derived from the measurements that this oscilloscope makes.

CLOCK TOOLS

Clock Analysis - Combines different measurement tools	Clock Analysis
Histogram - Statistical analysis of measurements such as period, pulse width, rise time and fall time. Includes DJ and RJ separation using TailFit.	Histogram
High Frequency Modulation - View jitter accumulation or the spectral content of jitter.	High Frequency Modulation
Strip Chart - Plot histogram statistics at regular intervals defined by the user.	Strip Chart
2 nd Order PLL Analysis - Extract information such as damping factor, natural frequency, input noise level, lock range, lock-in time, pull-in time, pullout range and noise bandwidth.	2nd Order PLL Analysis
3rd Order PLL Analysis – Find transfer function, view Bode plot, identify poles and zero, determine damping factor, natural frequency, etc.	3rd Order PLL Analysis
Other Clock Tools - This button accesses other tools used for clock analysis. See Other Clock Tools.	Other Clock Tools

This page intentionally left blank.

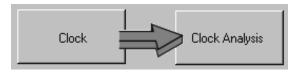
CLOCK ANALYSIS TOOL

This tool combines a few different measurement tools in the SIA. By doing this, a large number of useful results can be displayed quickly. The Measure Option button allows you to toggle on or off certain measurements. The measurement settings provide the best configuration to a variety of users. This ease of use means that there is less control over individual settings. There may be instances where there is the need to have more control over a specific measurement. An example would be changing the trigger delay on the oscilloscope, or measuring a histogram over two periods rather than single period jitter. Another example would be to find very low frequency jitter below the (clock/1667) low cutoff frequency of this tool.

In any of these cases, you can press Current View Diagnostic Tool from the view you are in to open that specific tool, make the measurement and have control over a larger number of settings. If viewing the Oscilloscope view, Pressing "Current View Diagnostic Tool" will open the Oscilloscope tool. You now have access to many more configuration settings. If viewing the Histogram view, Pressing "Current View Diagnostic Tool" will open the Histogram tool and allow different settings.

This tool has a variety of views. The displayed results are determined by the selections in the Measure Options menu. The default is to perform all measurements.

MAKING A CLOCK ANALYSIS MEASUREMENT


SETUP DIRECTIONS

• Connect signal to Channel 1.

Most Tools default to Channel 1, however, the input channel can be changed. For single-ended measurements, use just the top input SMA leaving the bottom unconnected. For differential measurements, connect to Input and Input-.

• Open the Clock Analysis tool by selecting the Clock and Clock Analysis buttons.

• Press Single/Acquire D on the toolbar or the Single/Acquire button on the front panel. Some results require repeated runs to acquire; you can press Run D to get those values.

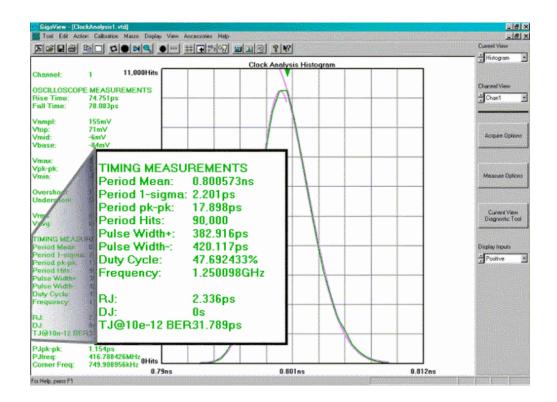
See Interpreting Clock Analysis Views for descriptions of the different ways of displaying the measurements made by the Clock Analysis Tool.

INTERPRETING VIEWS (PLOTS)

- Oscilloscope view Shows the waveform and measures voltage parameters.
- Histogram view Shows the results of a Period Jitter histogram.
- Total Jitter view Shows how the Pk-Pk grows over time.
- FFT Shows a frequency analysis of the jitter.
- Summary view View data in a text format and save user notes.

OSCILLOSCOPE VIEW

This Tool performs a number of measurements and summarizes the results on the left side. These results are associated with different Views. In this example the Current View selected is Oscilloscope. The "Oscilloscope Measurements" displayed to the left are made using the 6GHz sampling oscilloscope (Amplitude Engine).

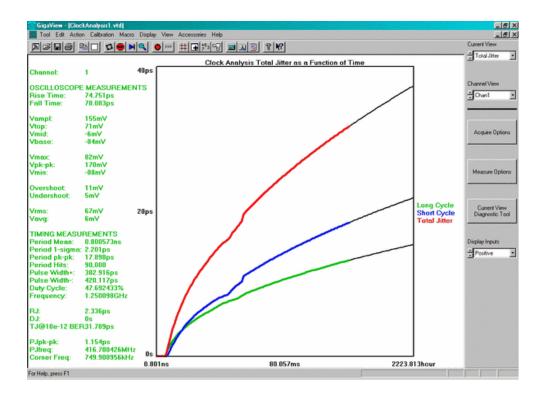

GigaView - [Clo							@_×
Total Edit Action Calibration Macro Display View Accessories Help 万谷岡岡谷 取合 Calibration Macro Display View Accessories Help							Current View
<u>NGRG</u>			●>>> 井 교 ‱ ⊒				Osciloscope *
				Clock Analysis O	scilloscope		Totenseebe T
Channel:	1	90mV				Current View selects	
OSCILLOSCOP	E MEASUREMEN	STR		^		how results are displayed	Channel View
Rise Time:	74.751ps						Chan1
Fall Time:	78.083ps			141			
Vampl:	155mV						
Vtop:	71mV	_		asurements wer			
Vmid:	-6mV		using the 60	Hz sampling os	cilloscope		Acquire Options
Vbase:	-84mV			plitude Engine			
Vmax	82mV						
Vpk-pk:	170mV		1 1			1 11	
Vmin:	-88mV		1			1 11	Measure Options
Overshoot	11mV					1 11	
Undershoot:	5mV		1 1	1	1	1 11	
Vrms:	67mV	8mV				1 11	Current View
Vevg:	6mV	01114		1	1	1 11	Diagnostic Tool
TIMING MEASU	DEMENTS			1	1	1 11	
Period Mean:	0.800573ns			1	1	J 11	Display Inputs
Period 1-sigma			1 1	1	1	1 11	
Period pk-pk:	17.898ps		1 1	1	1	(L)	Positive .
Period Hits:	90,000		1 1	1	1	1 11	
Pulse Width+:	382.916ps		1 1	1	1	1 11	
Pulse Width-:	420.117ps		1 1	1		1 1	
Duty Cycle:	47.692433%		1 1		1		
Frequency:	1.250098GHz			ŧ	- T - I	/ \/	
RJ:	2.336ps			1	1 1		
DJ:	0s				1 1	N	
TJ@10e-12 BE	R31.789ps				- X - 7	X	
PJpk-pk:	1.154ps						
PJfreq:	416.788426MH	90mV	V		V		
Corner Freq:	749.908956kHz		4ns	25ns		26ns	
For Units annual Fil		2	411.0	25 n s		26hs	

HISTOGRAM VIEW

The Histogram View shows the results of a Period Jitter histogram. The Period samples are made from the rising edge to the rising edge of a single period (using Timing Engine). The Period Mean, 1-Sigma and Pk-Pk relate to the displayed histogram. Period Hits is the number of samples in the histogram.

Pulse Width+ and Pulse Width- are also calculated from a histogram of measurements—though, this histogram is not displayed. Duty cycle and Frequency can then be calculated from these measurements.

The values for RJ (Random Jitter), DJ (Deterministic Jitter) and TJ (Total Jitter) are calculated using TailFit. TailFit determines an accurate RJ when DJ is present. TJ is a predicted Pk-Pk value based on the RJ and DJ measured and is bounded at some level of probability or some elapsed time. The default for this is 1e-12.

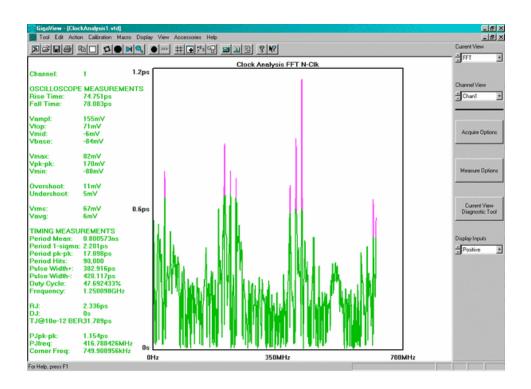


TOTAL JITTER VIEW

The Total Jitter View shows how the Pk-Pk grows over time. Pk-Pk of a histogram is not a meaningful metric if not bounded in some way. There are various bounds that can be used, such as sample size or acquisition time. The SIA defaults to a bound of 1e-12 level of probability. This means that TJ is the predicted Pk-Pk of a histogram at some point in time. The point where the color changes to gray is the bound for the TJ (this can be changed).

The Total Jitter View shows three lines. The vertical axis is the Total Jitter. The horizontal axis is elapsed time. The highest line is the Total Jitter predicted from TailFit (See TailFit Theory, Appendix B). The other two lines show the jitter for Short periods and Long periods.

For a detailed description of the Histogram Measurement Theory, refer to the Histogram Getting Started Guide.



FFT VIEW

The FFT view shows a frequency analysis of the jitter. When Deterministic Jitter is present, it is often periodic and can be identified in this jitter spectrum view. The summary on the left shows the amplitude of the largest Periodic Jitter (PJ pk-pk) spike. The frequency of the spike is labeled 'Pjfreq'. By identifying and trying to remove the cause of the largest spikes will reduce overall Deterministic Jitter.

This measurement has a fixed -3dB Corner Frequency High Pass Filter that is $F_{carrier}/1667$. Frequencies below this will be significantly attenuated.

For a detailed description of the underlying theory of this measurement, refer to the "High Frequency Modulation Getting Started Guide".

CLOCK ANALYSIS THEORY

The SIA is a hybrid instrument that combines the measurement capabilities of a sampling oscilloscope with time measurement circuitry: Rise/Fall times, Voltage amplitude and Eye Masks from the Oscilloscope; timing parameters, i.e., Period, Pulse widths, Skews and components of Jitter from the time measurement circuitry. This tool combines a few different measurement tools in the SIA. By doing this, a large number of useful results can be displayed quickly. The "Measure Options" button allows you to toggle on or off certain measurements. The measurement settings provide the best configuration to a variety of users. This ease of use means that there is less control over individual settings. But, there may be instances where there is the need to have more control over a specific measurement. Some examples would be changing the trigger delay on the oscilloscope, or measuring a histogram over two periods rather than single period jitter. Another example would be to find very low frequency jitter below the (clock/1667) low cutoff frequency of this tool.

In any of these cases, you can press "Current View Diagnostic Tool" from the view you are in to open that specific tool, make the measurement and have control over a larger number of settings. If viewing the Oscilloscope view, Pressing "Current View Diagnostic Tool" will open the Oscilloscope tool. You now have access to many more configuration settings. If viewing the Histogram view, Pressing "Current View Diagnostic Tool" will open the Histogram tool and allow different settings. This page intentionally left blank.

HISTOGRAM TOOL

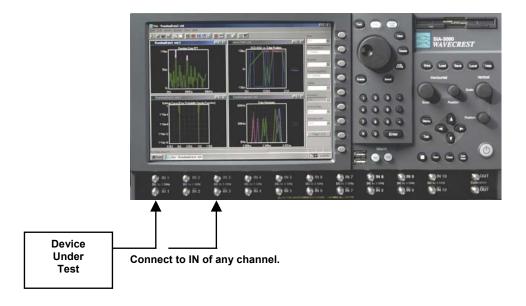
APPLICATIONS OF HISTOGRAM TOOL

- Displays information about the distribution of the measured events such as period, Rise time, Fall time, Positive pulse width, and Negative pulse width.
- Displays a histogram of the samples taken during a single burst of measurements.
- Analysis of long-term signal integrity in a short test time. TailFit option separates the Gaussian and deterministic components from the measured distribution. For a multi-modal distribution, Tailfit gives accurate information about the effects of jitter on long term and short term signal integrity.

The Histogram tool provides the user with statistical analysis of time measurements of different clock features such as Period, Rise time, Fall time, Positive Pulse Width, Negative Pulse Width. The time measurements are asynchronously sampled at random intervals to give a solid, statistical set displayed as an Histogram. The values of Mean, Maximum, Minimum, Peak-to-peak and 1-sigma are reported.

Proprietary software algorithms separate deterministic and random jitter components allowing the calculation of total jitter. These values are used to create a Bathtub Curve to predict long-term reliability.

See also TailFit theory, Appendix B.


MAKING A HISTOGRAM MEASUREMENT

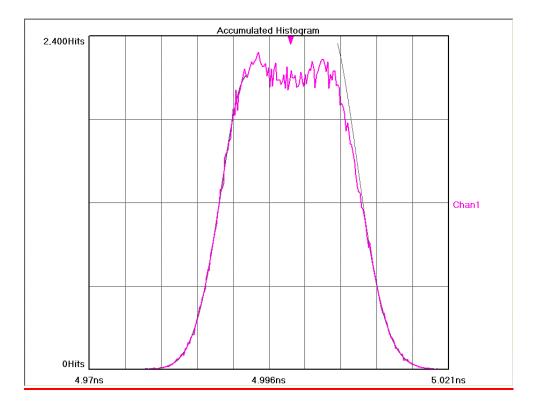
SETUP DIRECTIONS

On the Dialog bar menu along the right side of the initial *GigaView* screen, select <u>Lock</u>, then <u>Histogram</u>. The Dialog Bar menu default settings allows users, under most conditions, to immediately begin making measurements. Once the tool is open, users may reconfigure the Dialog bar menus for optimum viewing. Once the menus are configured a basic measurement can be made.

To make a measurement, ensure that the signal meets the current input specifications (see Signal Levels) for the unit. Connect to a measurement channel and choose that channel on the Dialog bar to the right. Set Hits per Edge to the number of time measurements that you want in a histogram.

- Verify that a signal is connected to any channel and that the proper channel is chosen in the menu.
- Click on Pulse Find and the tool bar. Verify the voltage levels and close out the pulse find box.
- Click on the Single Acquire button in or press the Run/Cycle button accumulate a continuous series of measurements.
- Press the Single Acquire button 🖻 or the Stop button 💷 to stop the cycling process.

INTERPRETING VIEWS (PLOTS)

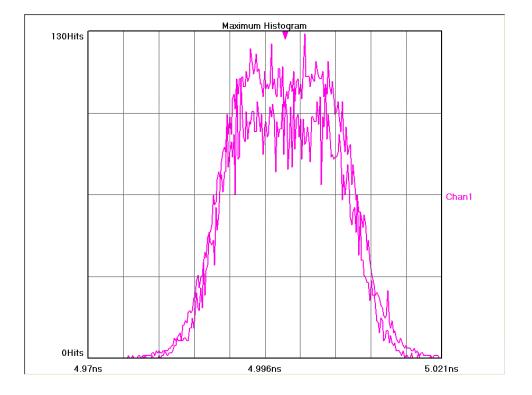

- Acum view Time vs. # of samples (all samples from Run or Single acquires)
- Maxi view Time vs. # of samples (Maximum extent of all samples)
- Bathtub view Error Probability Density Plot
- Summary view View data in a text format and save user notes

HISTOGRAM ACCUMULATED VIEW

This view shows the results of running acquires or multiple single acquires of time measurements displayed as a histogram. The statistics and plot relate to all measurements taken since the last clear.

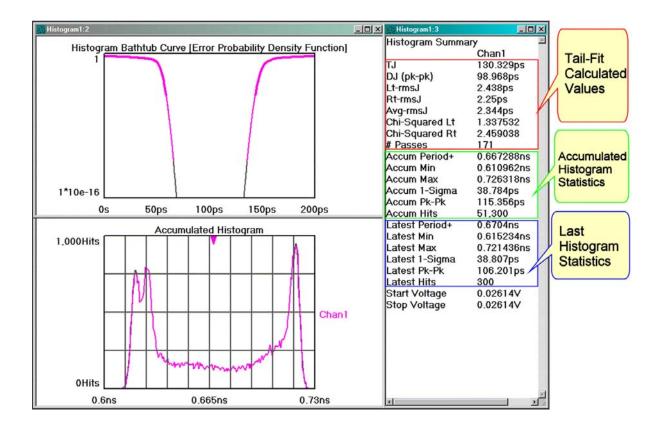
Horizontal x-axis shows Time.

Vertical y-axis shows the number of measurements (Hits per Edge).



HISTOGRAM MAXI VIEW

This view shows the Maximum number of hits per edge displayed as a histogram. Multiple acquires will only change the plot if the hits per edge for a given time exceeded the values from a previous acquire. It can be thought of as a maximum envelope of time measurements.


Horizontal x-axis shows Time.

Vertical y-axis shows the number of measurements (Hits per Edge).

HISTOGRAM BATHTUB VIEW

Bathtub Curve is also referred to as an "error probability density plot." This plot is derived from a convolution of DJ and RJ values from TailFit. The following plot shows a view of the long-term reliability of the signal under test. Total Jitter (TJ) is extracted directly from this plot and is a peak-peak value at a specific bit error rate or number of clock cycles. The TJ value is read from the curve at the point that the color turns to gray.

The Y-axis represents a number of cycles of the clock.

HISTOGRAM SUMMARY VIEW

The data represent values from histograms of measurements. Normal Histogram shows statistics from a single histogram. Accumulated Histogram shows statistics from all histograms since a clear. The user is able to annotate this page.

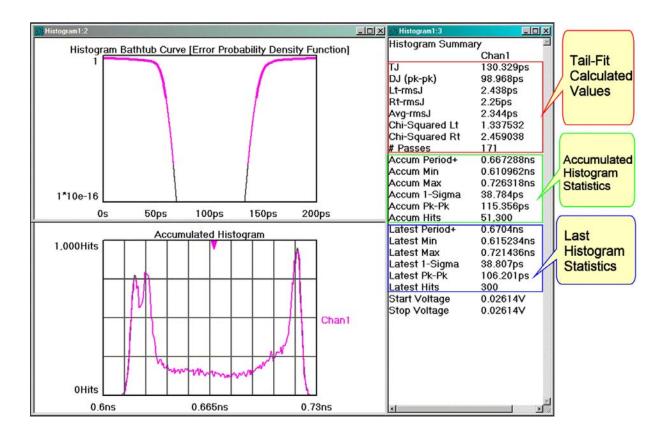
Histogram Summary				
	Chan1	Chan2		
μı	66.179ps	60.081ps		
DJ (pk-pk)	12.262ps	9.895ps		
Lt-rmsJ	3.845ps	2.688ps		
Rt-rmsJ	3.971ps	4.607ps		
Avg-rmsJ	3.908ps	3.647ps		
Chi-Squared Lt	2.32634	6.532566		
Chi-Squared Rt	1.642221	1.583708		
#Passes	94	95		
Accum Period+	4.999252ns	4.996062ns		
Accum Min	4.976629ns	4.975062ns		
Accum Max		5.016844ns		
Accum 1-Sigma	6.799ps	5.261ps		
Accum Pk-Pk	46.682ps	41.783ps		
Accum Hits	460,000	480,000		
Latest Period+	4.998432ns	4.995939ns		
Latest Min	4.980088ns	4.976301ns		
Latest Max	5.022934ns	5.013244ns		
Latest 1-Sigma	6.829ps	5.259ps		
Latest Pk-Pk	42.846ps	36.943ps		
Latest Hits	10,000	10,000		
Start Voltage	-0.00165V	-0.003604V		
Stop Voltage	-0.00165V	-0.003604V		
1				

If TailFit is enabled, additional values are shown:

- L_{RMS}, R_{RMS}, Avg_{RMS}, DJ, TJ and Goodness of Fits
- L_{RMS} is the RMS value from the Gaussian fitted to the left tail.
- R_{RMS} is the RMS value from the Gaussian fitted to the right tail.
- Avg_{RMS} is the average of the L_{RMS} and R_{RMS} values.
- DJ is calculated between the means of the fitted Gaussians on the histogram.
- TJ is calculated from the RJ and DJ components at a specific BER.
- Goodness of Fits is CHI Square value. Lower numbers indicate better confidence in RJ values.

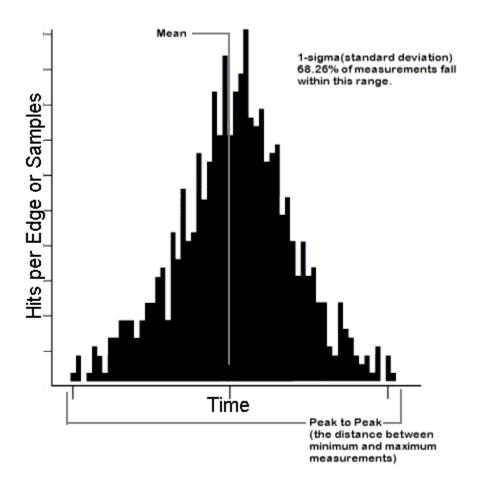
See TailFit Theory, Appendix B.

WITH TAILFIT ENABLED - SEE TAILFIT THEORY


Accumulated view shows the Gaussian curves fitted to the left and right tails.

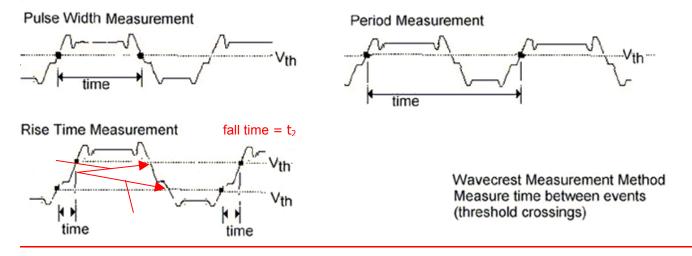
This Example shows three views from a histogram with TailFit enabled:

The top, Bathtub curve shows where the TJ is calculated.


The right, Summary view shows the values for goodness-of-fits (Chi-Squared), extracted DJ and fitted rmsJ. The rmsJ values are smaller than the 1-sigma for the histogram.

The bottom, Accumulated Histogram View shows the Gaussian curves fitted to the left and right tails.

HISTOGRAM THEORY OF OPERATION


The Histogram is the most basic information that the instrument and *GigaView* software will provide. The Hits per Measure determines how many time measurements will be in each histogram. Time values are binned and displayed on the x-axis (horizontal) while the y-axis (vertical) represents the number of hits that occurred in that bin. Basic statistical information can then be derived from the histogram: mean value, peak-to-peak, 1-sigma (1 standard deviation), maximum and minimum values.

The user can also see immediately if the distribution is multi-modal and if there is a jitter source present. Because the time samples are randomly made, the histogram represents a probability density function. So if the histogram of periods were bimodal with each mode having roughly equal samples, we can infer that the probability of a short and long period are equal. This would mean that short and long periods are alternating. For more information, see the in-depth description.

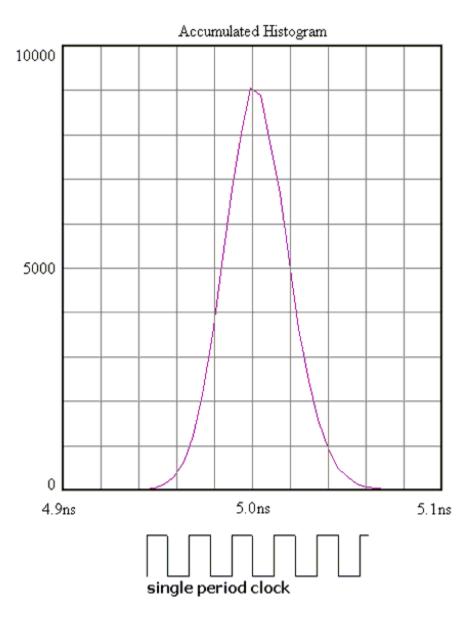
HISTOGRAM IN-DEPTH DESCRIPTION

The SIA[™] asynchronously measures times between threshold crossings.

These "hits" are made randomly. This randomization ensures that no jitter would be masked out by a constant sampling rate. Each hit, or time sample, is then binned into a histogram. The histogram is complete once the number of Hits per Measure has been reached. Additionally, the SIA[™] is not triggered. Triggered instruments can mask out jitter if the signal used to trigger is derived from the circuit under test.

See the following examples:

Example 1 is a histogram of a good clock.

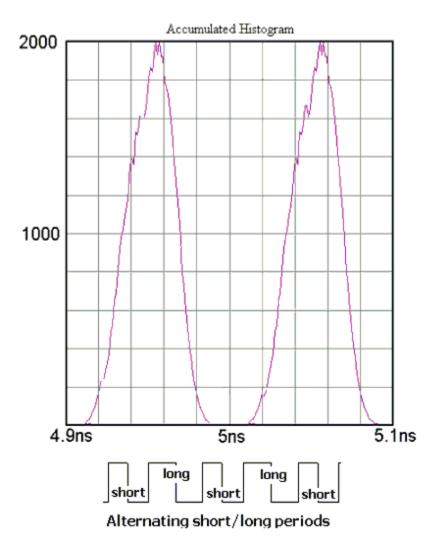

Example 2 is a bimodal histogram with equal heights.

Example 3 is a bimodal histogram with unequal heights.

EXAMPLE I

Single Mode Histogram - A Good Clock

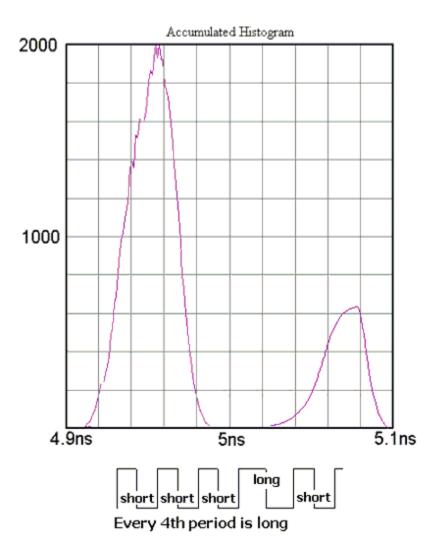
This histogram shows a single Gaussian distribution. This is typical of a random sampling of clock periods.



66

EXAMPLE 2

Bimodal Histogram-Equal Heights


This histogram shows two distributions (modes) that have roughly equal amounts of hits. The histogram relates to the probability of times being measured. Equal numbers of hits means that there is a equal probability (50%-50%) of measuring either short or long times (periods in this example). So in reality the clock would be alternating short, long, short, long, etc.

EXAMPLE 3

Bimodal Histogram - Unequal Heights

This histogram shows two distributions (modes) that have unequal amounts of hits. The histogram relates to the probability of times being measured. Unequal numbers of hits means that there is an unequal probability of measuring short or long times (periods in this example). Here, the left mode has four times as many samples as the right mode. The associated probabilities are 75% and 25% respectively. So in reality the clock would have three short periods and one long.

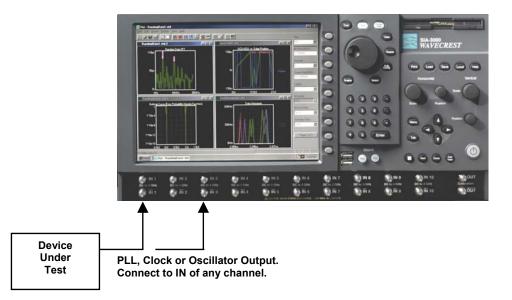
HIGH FREQUENCY MODULATION TOOL

APPLICATIONS

- View accumulated jitter in the modulation domain
- Look at the frequency components of jitter using an FFT
- Determine the amplitude, power or relative contribution to total jitter of each spectral component
- View how the jitter changes over time or output cycles.

OVERVIEW

High Frequency Modulation Analysis allows the user to see jitter accumulation or spectral content of the jitter. HF Modulation Analysis compiles histograms of incrementally increasing consecutive period measurements. These measurements can be between rising or falling edges. The High Frequency modulation tool plots a peak-peak value for an edge versus time. See High Frequency Modulation Theory.


MAKING A MEASUREMENT

SETUP DIRECTIONS

On the Dialog bar menu along the right side of the initial *GigaView* screen, select then High Frequency Modulation. The Dialog Bar menu default settings permits users, under most conditions, to immediately begin making measurements. Once the tool is open, users may reconfigure the Dialog bar menus for optimum viewing. Once the menus are configured a basic measurement can be made.

To make a measurement, ensure that the signal meets the current input specifications (see Signal Levels) for the unit.

- Verify that a signal is connected to an input channel and that the proper channel is chosen in the Dialog bar menu to the right.
- On the top toolbar press Pulse Find . Verify the voltage levels and close out the pulse find box.
- Press the Single Acquire button Press the Run/Cycle button allowing the instrument to accumulate a continuous series of measurements.
- Press the Single Acquire button \bowtie or the Stop button \bowtie to stop the cycling process.

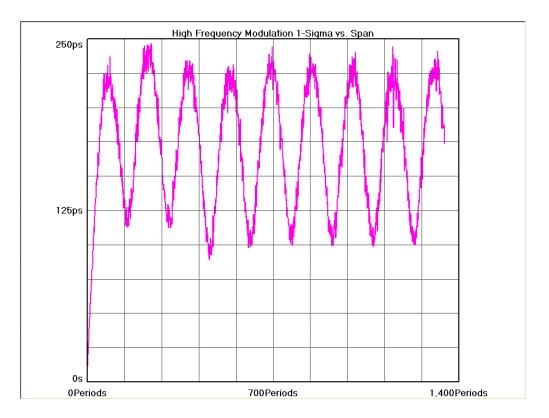
All of the measurements and data required to calculate and display the different views or plots available in the High Frequency Modulation tool are gathered simultaneously on one pass or acquisition.

INTERPRETING VIEWS (PLOTS)

- 1-Sigma view Edges (or time) vs. 1-sigma
- Pk-Pk view Edges (or time) vs. 1-sigma
- FFT N-clock view Frequency vs. power
- FFT 1-clock view Frequency vs. power (N-clock FFT with 20dB/decade Low Frequency roll-off)
- Summary view View data in a text format and save user notes

I-SIGMA VIEW

Each point on the plot represents the 1-sigma value from a histogram of measurements. The user is able to see how the 1-sigma value changes relative to accumulating clock periods. This provides information about jitter accumulation.

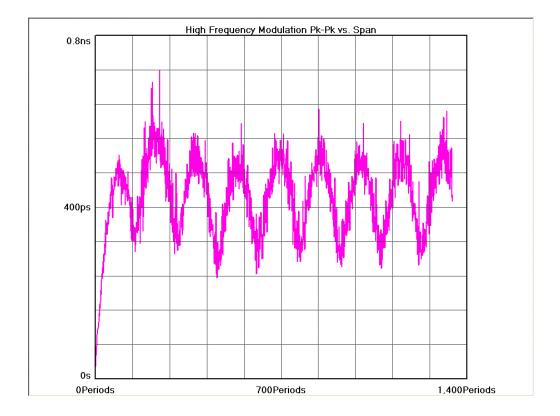

Horizontal x-axis shows either Time or number of Edges over which a histogram is made.

Vertical y-axis shows the 1-sigma value.

Cursor coordinates are displayed on the bottom status line

This plot shows the accumulation of jitter. Periodic components indicate modulation is present.

The frequency and power of this jitter can then be seen in the FFT View.

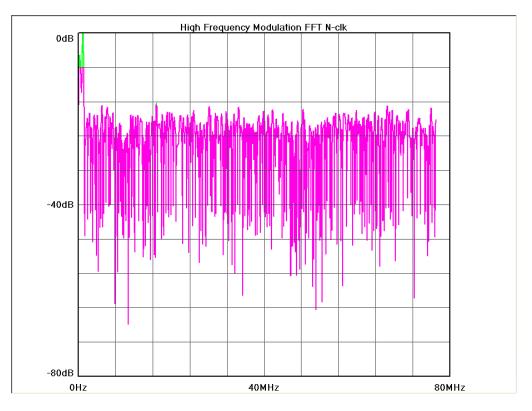


PEAK-TO-PEAK VIEW

Each point on the plot represents the peak-to-peak value from a histogram of measurements. The user is able to see how the peak-to-peak value changes relative to accumulating clock periods.

Horizontal x-axis shows either Time or number of Edges over which a histogram is made.

Vertical y-axis shows the peak-to-peak value.

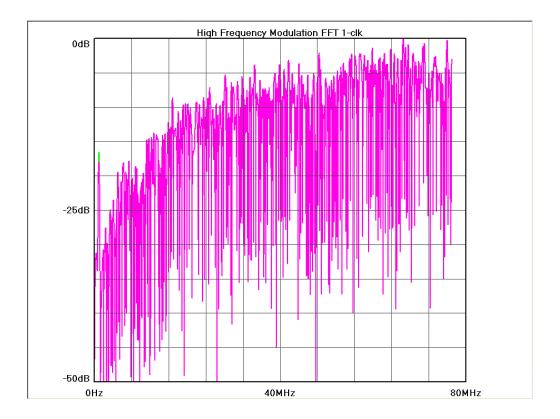


FFT N-CLOCK VIEW

The user is able to see the frequency components and amplitude of the jitter.

Horizontal x-axis shows Frequency.

Vertical y-axis shows the power in dBs or time.



FFT I-CLOCK VIEW

The user is able to see the frequency components and amplitude of the jitter affecting a single clock period. Compared to the N-clock view, the 1-clock view has a 20dB/decade roll-off for low frequencies. The purpose of this is to show the effect of jitter on a single clock period. Low frequency jitter components will affect single cycles of a clock much less than higher frequency jitter components.

Horizontal x-axis shows Frequency.

Vertical y-axis shows the power in dBs or time.

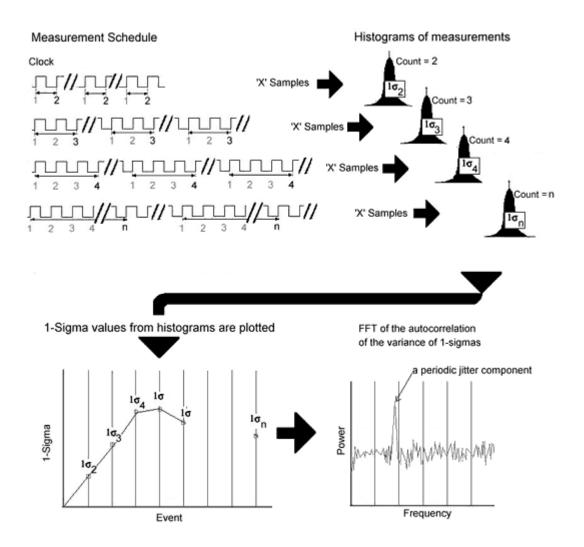
SUMMARY VIEW

The data represents values from histograms of measurements.

High Frequency M	odulation Summary			
	Mean	Minimum	Maximum	Pk-Pk
1-Sigma	172.672ps	8.057ps	246.761ps	238.704ps
Pk-Pk	425.043ps	22.583ps	0.718046ns	0.695463ns
	PJ	Freq	RJ	
1-Clock (Peak)	39.878ps	66.520499MHz	3.909ps	
N-Clock (Pk-Pk)	288.552ps	1.001086MHz	59.246ps	
Carrier Freq	154.007397MHz		-	
	V1:	0V	V2:	0∨

-The values in the 1-sigma row show the mean/min/max and pk-pk 1-sigma values from the 1-sigma plot.

-The values in the pk-pk row come from the pk-pk plot and show the mean, max and pk-pk of the pk-pk values.


-1-clock PJ and Freq show only the highest peak from the FFT (1-clock) view.

-N-clock PJ and Freq show only the highest peak from the FFT (n-clock) view.

-RJ is RMS jitter between -3dB Freq and Fmax

HIGH FREQUENCY MODULATION THEORY

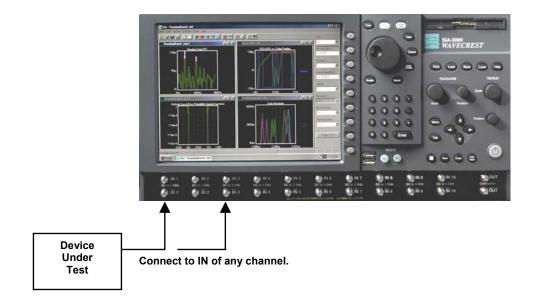
The High Frequency Modulation Analysis tool enables the user to see jitter accumulation and frequency components of the jitter. This tool acquires data by creating many histograms of measurements. Each histogram contains successively increasing numbers of periods. For example, a histogram of single periods is made, then a histogram of two periods, then three and so forth. By plotting the 1-sigma values relative to the number of periods, a comparison is made between histograms. When jitter is present, the 1-sigma values will change periodically. Frequency information can be derived from the changing 1-sigma values by using a windowed FFT.

Setting the -3dB Lower Rolloff Frequency to the lowest jitter frequency that you are concerned with will determine the number of histograms that must be made. The Fmax divider allows you to scale the FFT accordingly.

STRIP CHART TOOL

OVERVIEW

The Strip Chart tool plots histogram statistics at regular intervals defined by the user. The user can select to view the AVERAGE of the measurements and/or the AVERAGE, plus the RMS Jitter or the \pm peak jitter. This is selected in the View pull-down menu. The most vertical data represents the highest one-shot measurement of jitter and the lowest line being the most negative one-shot measurement of jitter. The line in the middle is the measurement AVERAGE of all the data taken by the instrument.


The "Elapsed Seconds" displayed on the horizontal scale indicates the time over which the burst results are graphically being displayed. In all, the data for up to 500 bursts are displayed across the screen. The Elapsed Time for those 500 bursts depends on the time entered into "Interval(s)", which is on the Dialog Bar. When the user selects "Cycle" from the Tool Bar, the display will continuously move from right to left with the "Elapsed Seconds" time stamping the burst data being displayed within the graph.

This allows long-term effects, such as environmental effects of long-term drift, to be measured. For example, histograms of period measurements could be made at every interval, i.e. 10 minutes, and the mean, 1-sigma, pk-pk, and max/min values plotted over a long time, i.e. overnight.

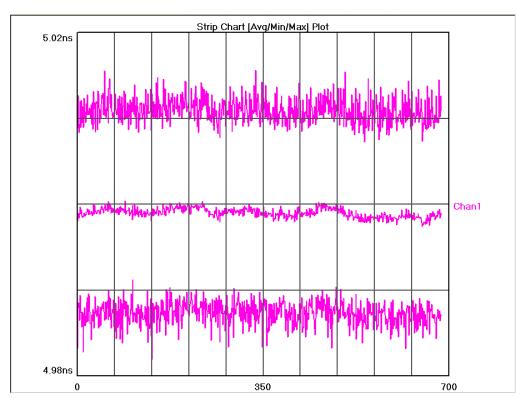
MAKING A MEASUREMENT

SETUP DIRECTIONS

- Verify the proper input signal levels.
- Connect the source to any channel IN
- If using External Arm Mode, connect an Arm signal to an input channel and select the appropriate channel in the Arming dialog bar

INTERPRETING STRIP CHART VIEWS (PLOTS)

- Ave/Max/Min
- Pk-Pk/1-Sigma
- Summary

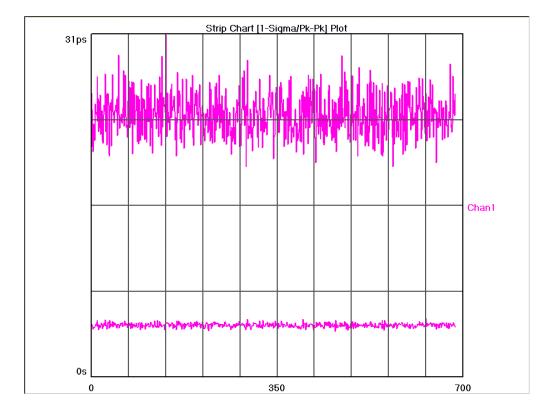

AVE/MAX/MIN

See long term changes in the Average, Maximum and Minimum measured values.

Horizontal x-axis shows time. The time Increment between points is set by the user.

Vertical y-axis shows the measured time.

The top line represents the Maximum; middle line, the Average; and bottom line, the Minimum values from histograms.


I-SIGMA VIEW/PK-PK

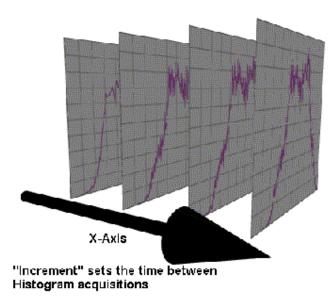
See long-term changes in the Peak-to-Peak and 1-sigma measured values.

Horizontal x-axis shows time. The user sets the increment between points. Vertical y-axis shows the measured time.

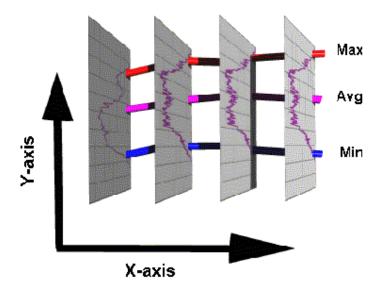
The top line represents the Peak-to-Peak values and the bottom line shows the 1-sigma values from histograms.

Cursor coordinates are displayed on the bottom status line.

SUMMARY VIEW


Shows the statistics from the most recent histogram.

Strip Chart Summary


	Chan1
Period+	4.998988ns
Minimum	4.981898ns
Maximum	5.015603ns
1-Sigma	4.713ps
Pk-Pk	8.337ps
Hits	206,870
Allan Variance	5.295437ns
Start Voltage	0∨
Stop Voltage	0∨

STRIP CHART THEORY OF OPERATION

The Strip Chart tool displays histogram data in a horizontal format with histograms being created at time intervals set by the user. It provides a means of compiling "snap-shots" of histograms over long periods of time to analyze wander, temperature effects or power fluctuations.

The user can select to view the AVERAGE/MINIMUM/MAXIMUM of the measurements or the 1-SIGMA/PK-PK values. In all, the data for up to 500 histograms are displayed across the screen.

The Elapsed Time between each histogram of time measurements depends on the time entered into INTERVAL. When the user selects RUN from the Tool Bar, the display will continuously move from right to left with the INTERVAL time stamping the burst data being displayed within the graph.

2ND ORDER PLL ANALYSIS TOOL

APPLICATIONS OF THE 2ND ORDER PLL ANALYSIS TOOL

- Find the transfer function of a 2nd-order PLL
- View the Bode plot of a PLL.
- Identify poles and zero of a 2nd-order PLL.
- Determine PLL characteristics such as lock in damping factor, natural frequency, lock range, lock-in time, pull-in time, pull-out range, etc.

OVERVIEW

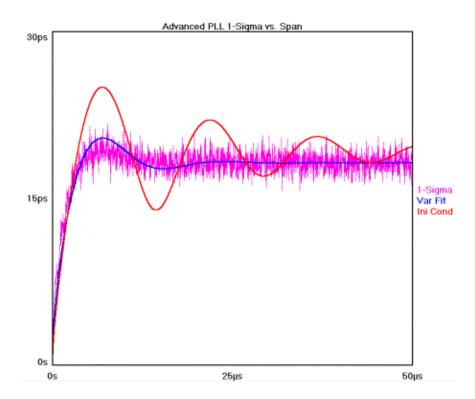
The 2nd-order PLL Analysis tool permits users to study characteristics and parameters of a 2nd-order PLL. With a simple set of variance measurements, the tool can extract information such as damping factor, natural frequency, input noise level, lock range, lock-in time, pull-in time, pull-out range and noise bandwidth. The tool also presents a transfer function and Bode plots up to the natural frequency, as well as a plot of the poles and zero for a 2nd-order PLL.

MAKING A 2ND-ORDER PLL ANALYSIS MEASUREMENT

SETUP DIRECTIONS

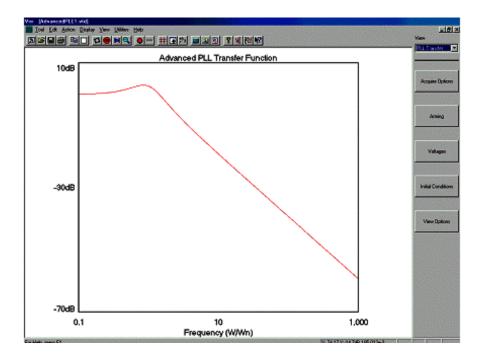
- Open the 2nd-order PLL tool.
- Connect the signal to a measurement channel (see below). Set the measurement channel in *GigaView* by going to the **Acquire Option** menu and choosing **Channel**.
- Confirm that a valid signal exists at the measurement channel by using **Pulsefind**
- Set the **Rec Length** (µs) and the **Meas Incr (Periods)**. All other parameters are left as default.
- Begin acquisition by pressing **Single/Stop** button on the front panel ▶.

When acquisition is complete, the **Single/Stop** button will cease to illuminate.

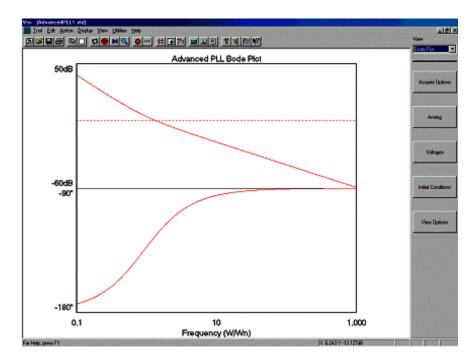

INTERPRETING 2ND-ORDER PLL ANALYSIS VIEWS (PLOTS)

- 1-Sigma
- PLL Transfer
- Bode Plot
- Poles & Zero
- Summary

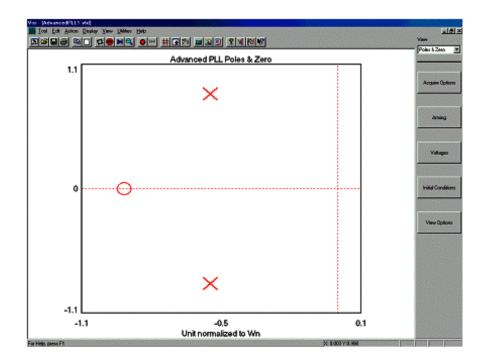
I-SIGMA PLOT


The time domain data can be viewed by selecting **1-Sigma** under the **View** menu.

The x-axis shows the span of the jitter accumulation. The y-axis shows the rms standard deviation of the accumulated jitter at a certain span.


PLL TRANSFER PLOT

The domain of the transfer function is frequency normalized to the natural frequency ω_{n} . The y-axis is magnitude in dB.


BODE PLOT

The domain of the Bode Plot is frequency normalized to the natural frequency ω_{n} . The upper plot is amplitude in dB and the lower plot is phase in degrees.

POLES AND ZERO PLOT

The axes of the plot is complex frequency normalized to the natural frequency ω_{n}

SUMMARY PLOT

This view contains many calculated PLL characteristics such as damping factor, natural frequency, input noise level, lock range, lock-in time, pull-in time, pull-out range, and noise bandwidth.

Viei - [AdvancedPLL1.vix]					
Icel Edit Action Display			and the stand		Life Var
Advanced PLL Sum					
	Mean	Minimum	Maximum	Pk-Pk	and the second second
1-Sigma	13.6ps	1.524ps	17.377ps	15.853ps	Actuire Options
Carrier Freg	1.25234GHz				
Damping Factor	0.545966				
Natural Frequency	+1+1++++				Aming
PSD of Noise	-81.490941dBc/Hz				and the second second
Chi-Squared	1,476.157755				
Lock Range	97.191099kHz				Values
Lock-in Time Pull-in Time	11.232849µs				
Pull-out Range	3.611715µs 247.716292kHz				E BOOMERSON
Noise Bandwidth	44.683854kHz				Initial Conditions
[A CONTRACTOR OF
	V1:	-0.016397V	V2:	-0.016397V	-
					View Dotions
					Diversity
					6923092939
					ESSENTER
					E BERSENER
					21
E .					2

Data summary and PLL characteristics

The PLL characteristics provided in the summary window are the following:

- Damping factor ζ as defined in Eq. 1 (see PLL Analysis Theory).
- Natural frequency ω_n as defined in Eq. 1.
- PSD of noise level of white input noise.
- Lock range frequency range within which a PLL can lock within one beat note between the ω_{Ref} and ω_{Out} .
- Lock-in time time scale for PLL to lock into from the lock range.
- Pull-in time time scale for the PLL to lock from the pull-in range, which is the range within which the PLL will always lock.
- Pull-out range the dynamic limit for stable operation of a PLL.
- Noise bandwidth PLL output phase noise integrated over the bandwidth of the PLL

2ND-ORDER PLL ANALYSIS THEORY OF OPERATION

The 2nd-order PLL Analysis measurement tool is based on a white paper authored by *WAVECREST* CORPORATION [1]. The fundamental measurement of this tool is the 1-sigma (σ) vs. UI plot similar to the High Frequency Modulation tool [2]. The relationship between the jitter variance (σ^2) and the jitter power spectral density (PSD) is well established [3]. The jitter PSD of the PLL output clock is related to the PLL reference clock noise via the transfer function. Therefore, with reasonable assumptions about the input noise of the PLL reference clock, we can infer the transfer function of the PLL.

At the current time, we assume that the input noise spectrum is white and the PLL is of 2^{nd} -order. The 2^{nd} -order PLL transfer function in Laplace space is given by

$$H(s) = \frac{2\zeta\omega_n s + \omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

where $s = i\omega$ is the complex frequency, ω_n is the natural frequency, and ζ is the damping factor. The parameters ω_n , ζ , and the input noise level are found from a least-squares fit of the variance. Once H(s) is determined, PLL characteristics such as natural frequency, damping factor, damping frequency, pull-in range, pull-in time, pull-out range, pull-out time, lock range, lock time, lock frequency, Bode plots, root locus, poles, zeros, and stability are readily obtained.

- [1] Li, M., *A New Method for Simultaneously Measuring and Analyzing PLL Transfer Function and Noise Processes*, DesignCon Proceedings, 2002.
- [2] For more information, refer to "High Frequency Modulation", *GigaView* Quick Reference Guide, *Wavecrest* Corporation
- [3] Wilstrup, J., *A Method of Serial Data Jitter Analysis Using One-shot Time Interval Measurements*, ITC Proceedings, p.819, 1998.

3RD-ORDER PLL ANALYSIS TOOL

APPLICATIONS OF THE 3RD ORDER PLL ANALYSIS TOOL

- Find the transfer function of a 3rd order PLL.
- View the Bode plot of a 3rd order PLL.
- Identify poles (3) and zeros (2) of a 3rd-order PLL.
- Determine PLL characteristics such as peaking, 3dB frequency, lock in time, lock range, pull-in time, pullout range, etc.

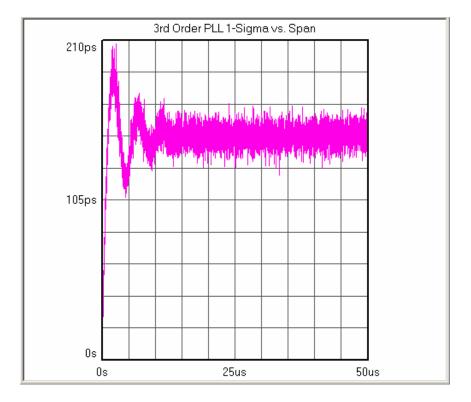
OVERVIEW

The PLL Analysis tool permits users to study characteristics and parameters of a 3rd order PLL. With a simple set of variance measurements, the tool can extract information such as peaking, 3dB frequency, input noise level, lock range, lock-in time, pull-in time, pullout range and noise bandwidth. The tool also presents a transfer function and Bode plots, as well as a plot of the poles and zero for a 3rd order PLL.

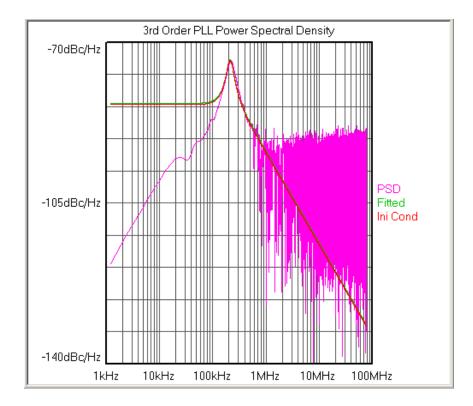
MAKING A 3RD-ORDER PLL ANALYSIS MEASUREMENT

SETUP DIRECTIONS

• Connect the signal to a measurement channel (see figure below). Set the measurement channel in GigaView by going to the **Acquire Option** menu and choosing **Channel**.

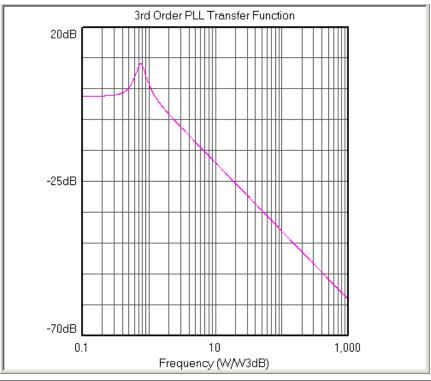

- Confirm that a valid signal exists at the measurement channel by using **Pulsefind**
- For this example, the **Rec Length** (μ s) is 25 and the **Meas Incr (Periods)** is 5. All other parameters are left as default
- Begin acquisition by pressing **Single/Stop** button on the front panel **▶**.
- When acquisition is complete, the **Single/Stop** button will cease to illuminate.

INTERPRETING 3RD-ORDER PLL ANALYSIS VIEWS (PLOTS)

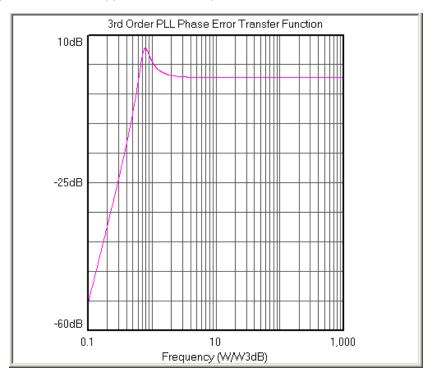

- 1-Sigma
- PLL PSD View
- PLL Transfer
- Bode Plot
- Poles & Zero
- Summary

I-SIGMA VIEW

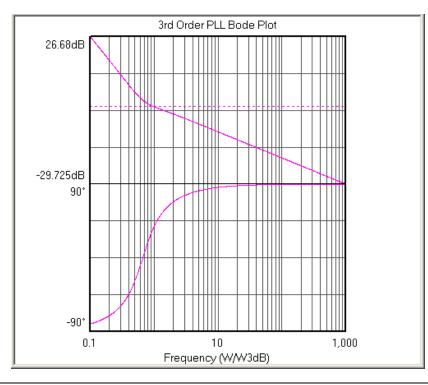
The x-axis shows the span of the jitter accumulation. The y-axis shows the rms standard deviation of the accumulated jitter as a function of span. Plot line is the acquired data.



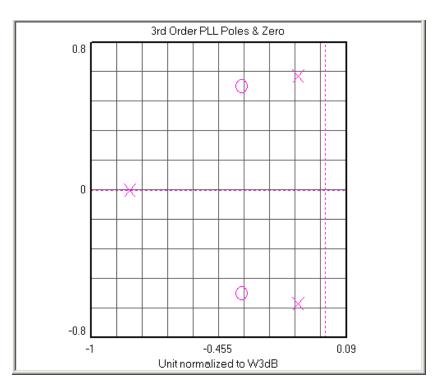
PSD VIEW


TRANSFER VIEW

The domain of the transfer function is frequency normalized to the natural frequency ω_{n} . The y-axis is magnitude in dB.


PHASE ERROR TRANSFER FUNCTION VIEW

The domain of the Phase Error Transfer Function plot is frequency normalized to the corner frequency. This plot describes the transfer function between applied phase error to the input reference of the PLL and the phase error that appears on the output of the PLL.


BODE PLOT VIEW

The domain of the Bode plot is frequency normalized to the corner Frequency. The upper plot is amplitude in dB and the lower plot is phase in degrees.

Poles and Zero View

The axes of the plot are complex frequencies normalized to the corner Frequency in radians.

SUMMARY VIEW

Information included in this view:

- Statistics of the 1-Sigma measurements such as mean, minimum, maximum, and peak-to-peak.
- The value of the carrier frequency
- Goodness of fit (Chi-Squared)
- PSD of noise level of white input noise.
- Lock range frequency range in which a PLL can lock within one beat note between the wRef and wOut.
- Pull-in time time scale for the PLL to lock from the pull-in range, which is the range within which the PLL will always lock.
- Noise bandwidth PLL output phase noise integrated over the bandwidth of the PLL.
- Peaking Amplification (in dB) at the peak of the transfer curve
- Corner Frequency (Freq3dB) Loop filter bandwidth of the PLL
- Zero and Pole locations

3rd Order PLL Sumn	narv	NOT CONNECTED		
1-Sigma	Mean 146.421ps	Minimum 9.41ps	Maximum 207.681ps	Pk-Pk 198.271ps
Carrier Freq PSD of Noise A2 Coef(unscaled) A3 Coef(unscaled) K Coef(unscaled) Chi-Squared Lock Range Pull-in Time Noise Bandwidth Peaking Freq3dB	154.997926MHz +83.237768dBc/Hz 1.257374e6 1.381868e12 1.888271e6 0.194497 300.050259kHz 0.799775ns 194.971419kHz 95.08945dB 281.655148kHz			
Zero(0) Zero(1) Pole(0) Pole(1) Pole(2)	Real -0.355252 -0.355252 -0.833702 -0.115804 -0.115804	Imaginary 0.561277 -0.561277 0 0.617762 -0.617762		
	V1:	-5.463m∨	√2:	-5.463m∨

3RD-ORDER PLL ANALYSIS THEORY OF OPERATION

The PLL Analysis measurement tool is based on white papers authored by *WAVECREST CORPORATION* [1],[4]. The fundamental measurement of this tool is the 1-sigma (σ) vs. UI plot similar to the High Frequency Modulation tool [2]. The relationship between the jitter variance (σ^2) and the jitter power spectral density (PSD) is well established [3]. The jitter PSD of the PLL output clock is related to the PLL reference clock noise via the transfer function. Therefore, with reasonable assumptions about the input noise of the PLL reference clock, we can infer the transfer function of the PLL.

For PLL transfer function, we assume that the input noise spectrum is white and the PLL is of 3rd-order. The 3rd-order PLL transfer function in Laplace space is given by

$$H(s) = \frac{K(s^2 + a_2s + a_3)}{s^3 + K(s^2 + a_2s + a_3)}$$

where $s = i\omega$ is the complex frequency, K is the loop gain of the PLL, a_2 is radian frequency tracking parameter, having a dimension of radian frequency or phase speed, a_3 is radian frequency speed tracking parameter, having a dimension of radian frequency or phase acceleration.

The input noise level PSD and the 3rd PLL transfer function H(s) are found from a least-squares fit of the measured PLL jitter PSD [4]. Once H(s) is determined, PLL characteristics such as peaking, 3dB frequency, pull-in range, pull-in time, pull-out range, pull-out time, lock range, lock time, lock frequency, Bode plots, root locus, poles, zeros, and stability are readily obtained.

- [1] Li, M., A New Method for Simultaneously Measuring and Analyzing PLL Transfer Function and Noise Processes, DesignCon Proceedings, 2002.
- [2] For more information, refer to "High Frequency Modulation", GigaView 7 Quick Reference Guide, Wavecrest Corporation
- [3] Wilstrup, J., A Method of Serial Data Jitter Analysis Using One-shot Time Interval Measurements, ITC Proceedings/IEEE, p.819, 1998.
- [4] J. Ma, M. Li, M. Marlett, "A New Measurement and Analysis Method for A Third Order Phase Locked Loop (PLL) Transfer Function", ITC Proceedings/IEEE, 2005.

OTHER CLOCK TOOLS

Statistics - Displays time measurements including frequency and duty cycle.	Statistics
Low Frequency Modulation - Power-up testing of PLL circuits; view low frequency jitter - below 20kHz.	Low Frequency Modulation
Phase Noise - Show the amplitude and frequency of phase noise relative to the carrier signal frequency.	Phase Noise
Locktime - Analyze PLL stabilization time.	Locktime
Cycle-to-Cycle - Displays a histogram of the difference between two adjacent cycles of a clock.	Cycle-to-Cycle
DRCG - Analyze, debug and characterization of clock signals using Adjacent Cycle Jitter Statistics as required for Rambus DRCG devices.	DRCG
Spread Spectrum - Automatically measures SSC effects on signals. The tool will measure the frequency of the SSC as well as its plus and minus parts per million (ppm) delta from a nominal frequency.	Spread Spectrum

STATISTICS TOOL

OVERVIEW

The **Statistics** panel displays the results of several basic clock parameters in text format: mean, minimum, maximum, 1-sigma, peak-to-peak, hits, frequency and duty cycle. Also displayed are the measured Vstart, Vstop as well as the Vp-p, Vmax and Vmin of the two input channels.

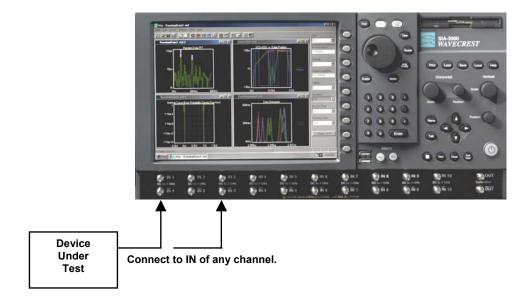
Clock Statistics Summary						
	Mean	Minimum	Maximum	Pk-Pk	1-Sigma	
Period+	20.006661ns	19.981955ns	20.033436ns	51.482ps	10.694ps	
Period-	20.00082ns	19.972446ns	20.029156ns	56.71ps	12.112ps	
PW+	10.041101ns	10.016619ns	10.063029ns	46.411ps	10.033ps	
PW-	9.96556ns	9.950061ns	9.982729ns	32.668ps	5.964ps	
Frequency	49.997685987MHz	Chan Vpk-pk	2 0.414062∨			
DutyCycle	50.18879%	Vmax	0.189181V			
Hits	300	Vthreshold Vmin	-0.01785∨ -0.224882∨			

The **Statistics** panel provides a summary of the statistics from a single histogram of measurements of the chosen function (period, rise-time, fall-time, positive pulse width and negative pulse width). The tool reports the clock frequency with 9 digits of precision. **Duty cycle** is displayed in this tool.

NOTE: This is the only tool that gives a frequency or duty cycle measurement.

The **force pulsefind** option, when set on, performs a pulsefind after each histogram and displays the updated voltage information with each run.

LOW FREQUENCY MODULATION


OVERVIEW

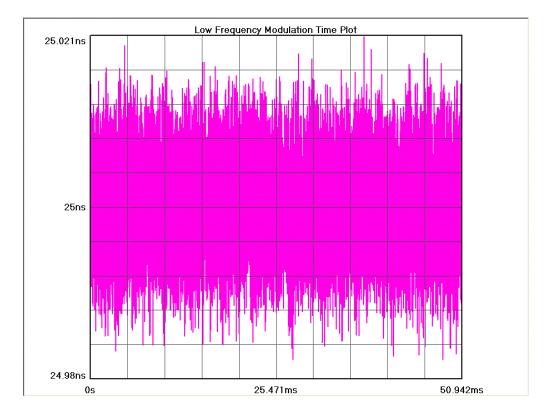
The Low Frequency Modulation Tool is useful for power-up testing of PLL circuits or measuring low frequency jitter problems (<20kHz), both synchronously and asynchronously, with either the AUTO ARM or EXTERNAL ARM modes being enabled.

MAKING A MEASUREMENT

SETUP DIRECTIONS

- Verify the proper input signal levels
- Connect the source to any input and verify that the proper channel is chosen in the dialog bar menu.
- Press the Single Acquire button D or press the Run/Cycle button D allowing the instrument to accumulate a continuous series of measurements.
- Press the Single Acquire button 🖻 or the Stop button 🗐 to stop the cycling process.

INTERPRETING VIEWS (PLOTS)

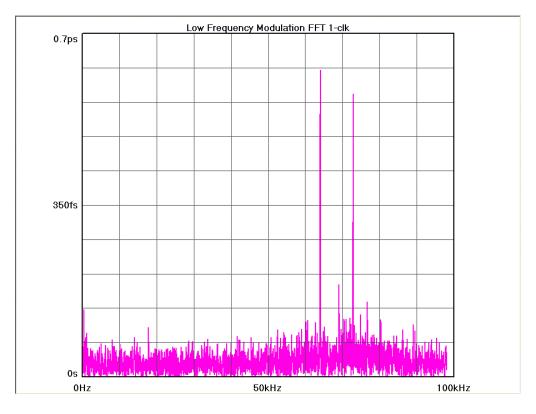

- Time Edges (or time) vs. time
- FFT 1-clock Frequency vs. power (N-clock FFT with 20dB/decade Low Frequency roll-off)
- FFT N-clock Frequency vs. power
- Summary View data in a text format and save user notes

Тіме

This view shows the modulation waveform.

The X-axis shows a timestamp value.

The y-axis shows the measured period value.



FFT I-CLOCK

Periodic components indicate modulation is present. This plot shows the Frequency and amplitude of jitter. The highest peak is set to 0dB and all other peaks are referenced to it. The cursor coordinates also show the power in time.

Horizontal x-axis shows frequency.

Vertical y-axis shows power.

SUMMARY

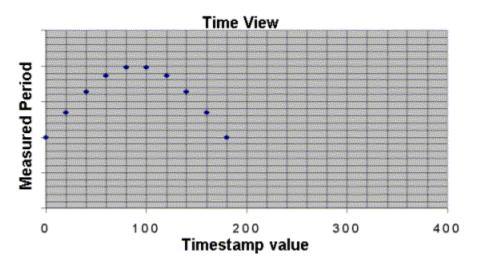
This view shows a summary of the most recent time measurements and the frequency information from the largest peak on the FFT

Low Frequency M					
	Mean	Minimum	Maximum	Pk-Pk	1-Sigma
Period	25.000747ns	24.982324ns	25.020826ns	38.502ps	6.691ps
	PJ	Freq			
1-Clock (Peak)	0.626ps	64.067917kHz			
N-Clock (Pk-Pk)	29.854809ns	47.141775Hz			
Carrier Freq	199.982016MHz				
	V1:	-0.00165V	V2 :	-0.00165V	

LOW FREQUENCY MODULATION THEORY OF OPERATION

This circuitry is used to record the time at which a measurement is made, in other words, each single time measurement in a histogram is time stamped. A single histogram of a number of hits is gathered. The statistical values from this histogram are recorded in the Summary view. The data in this tool is not plotted as a histogram.

In Time View, the single measurements, or hits, are plotted in the order they occur. The software plots the timestamp value on the x-axis and the measured period value on the y-axis.


In the FFT View, the frequency information is derived from the Time View.

Minimum Data Points determines the number of time measurements shown on Time View and refers to the number of hits in the histogram.

Maximum Frequency determines the resolution of the plot in the FFT view or the time between measurements in Time View.

Basically, changing the Maximum Frequency slows down the sampling rate—or increases the time between measurements. The instrument then captures samples over a longer time and is able to measure lower frequency information.

The first example shows 10 measurements spaced in time. This represents a single histogram of 10 hits with the hits plotted on the x-axis in the order they were acquired starting from the left. It is apparent that the period of the clock being measured is varying or modulated. This acquisition has not captured an entire cycle of the modulation.

By decreasing the **Maximum Frequency**, the time between measurements is increased and lower jitter frequencies can be captured. The following figure shows the Maximum Frequency divided by two with the same number of **Minimum Data Points**, 10, as in the previous figure.

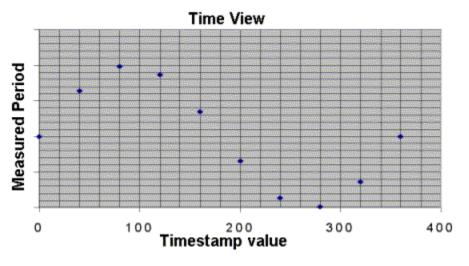
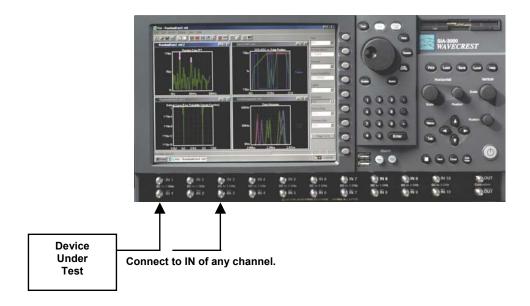


Figure 2

PHASE NOISE TOOL

OVERVIEW

The Phase Noise tool allows users to measure phase noise in clock/oscillator sources. By simply choosing the highest frequency to be displayed and the frequency resolution, the tool will measure and display the phase noise spectrum. A summary view reports the phase noise values at common offset frequencies.


The Phase Noise tool is used to show the amplitude and frequency of phase noise relative to the carrier signal frequency. This tool measures the fluctuations in the phase of a signal caused by time domain instabilities. Fast and easy phase noise measurements of oscillators and PLL devices can be easily correlated to other noise effects on the signal.

MAKING A MEASUREMENT

SETUP DIRECTIONS

The signal that is being analyzed can be connected to any input channel.

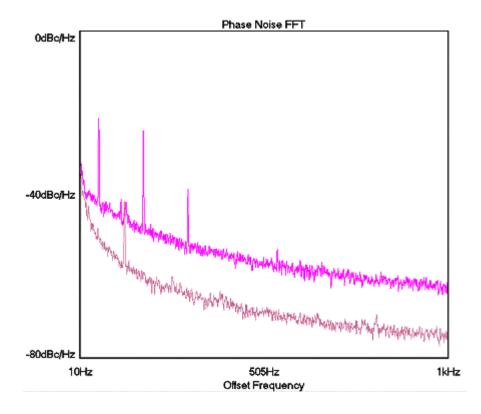
- Verify the proper input signal levels
- Connect the source to IN of any channel

INTERPRETING VIEWS (PLOTS)

- FFT Time amplitude vs. frequency content of jitter
- Summary View data in a text format and save user notes

FFT VIEW

This is the FFT of the acquired data. This plot shows the spectral power density of the jitter component frequencies from the carrier frequency to the Maximum Frequency entered in the options.


In the following plot example, a phase noise measurement is made on a clock signal with injected phase noise.

The signal source is a Marconi 2041 low noise signal generator. The signal has a carrier frequency of $f_0 = 1$ GHz. The carrier is frequency modulated with white noise and deviation of $\Delta f = 50$ kHz.

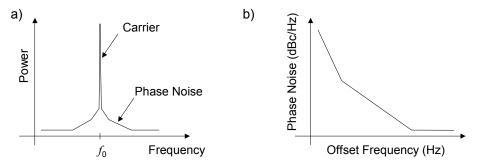
The bright magenta line is the phase noise measurement of the carrier with noise added. The dim magenta line is the same measurement without noise and corresponds to the $\sim 1/f$ noise floor of the instrument.

The x-axis shows the frequency offset from the carrier.

The y-axis shows the measured phase noise.

SUMMARY VIEW

The Phase Noise Summary view reports values from acquired measurements.


Mean is the measured period time; note that if the Maximum Frequency setting is changed, this will effectively skip edges and measure over many periods.

Min, Max, Pk-Pk, and 1-sigma are values from the histogram of measurements that the mean came from. dBc/Hz is the reported value from the chosen offset frequency and offset width.

Phase Noise Su	Immary				
	Mean	Minimum	Maximum	Pk-Pk	1-Sigma
Period	4.990417ns	4.978638ns	5.002441ns	23.804ps	3.079ps
	dBc/Hz	Carrier Freq	Offset Freq	Offset Width	
Phase Noise	29.508969	200.035894MHz	100Hz	10Hz	
	V1:	0∨	V2:	0∨	

PHASE NOISE THEORY

Phase noise is the random fluctuation of phase in a clock signal and is typically used to specify the quality of a PLL circuit. In the frequency domain, phase noise appears as sidebands of the carrier frequency (Figure a). Phase noise is commonly shown as a single side band at frequencies offset from the carrier (Figure b). Typical domain of interest is frequencies within a few kilohertz of the carrier.

Figures a and b. Phase noise in frequency domain.

Phase noise is expressed as the normalized power spectral density (PSD) on a decibel scale. It is defined by

Eq. 1
$$L(f) = 10 \log_{10} \left(\frac{P(f)}{P_0 \Delta f} \right),$$

where *f* is frequency offset from the carrier, P_0 is the power of the carrier, P(f) is the noise power spectrum, and Δf is the resolution bandwidth of the noise power spectrum. The units of phase noise are dBc/Hz. Typical regions of interest are frequencies within a few kilohertz offset from the carrier. For the time interval measurement systems, the phase noise power is given by

Eq. 2
$$P(f) = \frac{1}{2} V_0^2 (2\pi f_0 \Delta t(f))^2$$
,

where, f_0 and V_0 are the carrier frequency and peak voltage, respectively, and $\Delta t(f)$ is the FFT N-clock jitter spectrum acquired from the Low Frequency Modulation tool. The power of the carrier is $P_0 = V_0^2/2$. The corresponding phase noise is

Eq. 3
$$L(f) = 10 \log_{10} \left(\frac{f_c^2 \Delta t(f)^2}{\Delta f} \right),$$

where Δf is the resolution bandwidth of the jitter spectrum.

LOCKTIME TOOL

APPLICATIONS

- Measure Locktime or PLL settling time.
- View the synchronous jitter.
- Locktime Tool enables the user to view information about the measured function of the signal on the measurement channel with respect to some arming point. The user can view any synchronous jitter pattern that may exist. View the frequency or period settling time of a PLL after a change, such as a lock signal or input frequency change.

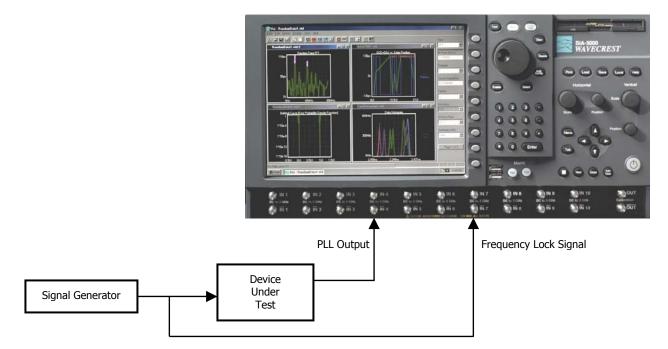
OVERVIEW

The Locktime tool is actually an automated histogram process. The tool gathers time measurements to create many histograms. Statistical information from these histograms is then plotted.

The Locktime tool can be used for making synchronous time measurements with an external arm signal used as a point of reference. This allows the user to view locktime, or settling time.

This tool uses the Arm (see Arming) for synchronization to a signal such as a frequency lock or powerup signal. In the following discussion, Period measurements are used, though rise-time, fall-time, positive pulse width, negative pulse width and frequency can be chosen.

A histogram of time measurements is created of the period following the arm. The period being measured is then incremented to the 2nd period following the arm and a histogram is created. Then the 3rd period is measured to create a histogram and this process repeats until the Span (edges) value has been reached. The number of time measurements in each histogram is chosen by Hits per Measure. Statistical information from these histograms is then plotted relative to the corresponding period. So in View, if Time is chosen, the mean (y-axis) is plotted relative to the period after the arm (x-axis). Similarly, other Views will plot the Pk-Pk or 1-sigma values.


The Arm must be periodic in order for the measurement process to work. A single power up or a single frequency lock will not allow this process to occur. Using a signal from a pulse generator works well as the Arm and lock signal.

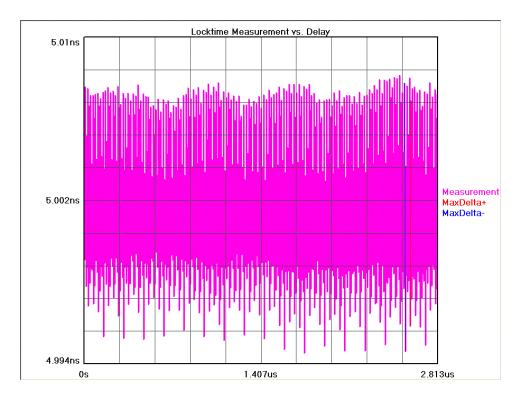
MAKING A MEASUREMENT

SETUP DIRECTIONS

This tool requires an Arming signal. With Locktime, the user is able to make synchronous, single channel measurements.

- Verify the proper input signal levels.
- Connect the source to any channel
- Connect an arm signal to any open channel

The arm signal provides a point of reference for the measurements to be made. For measuring PLL locktime, period or frequencies are measured. These measurements are made by automatically incrementing the Delay until the Span value is reached.

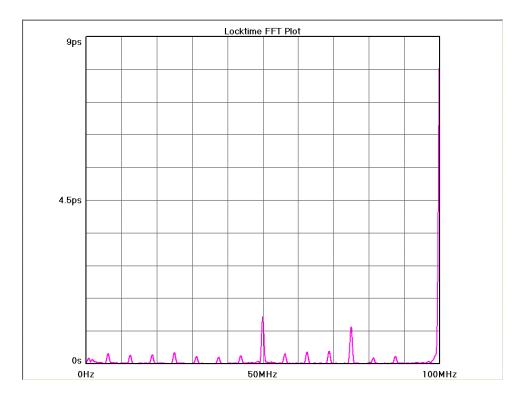

INTERPRETING VIEWS (PLOTS)

- Time Time (edge) vs. Mean
- FFT Frequency vs. Power (in dBs or Seconds)
- 1-sigma Time (edge) vs. 1-sigma
- Pk-Pk view Time (edge) vs. Peak-to-Peak
- Summary View data in text format and save user notes

Тіме

Each point on the plot represents the *mean* value from a histogram of measurements. The user is able to see how the *mean* of the measured Function changes after an Arm signal (see Arming).

This plot shows measured periods of a clock with spread spectrum modulation (jitter).

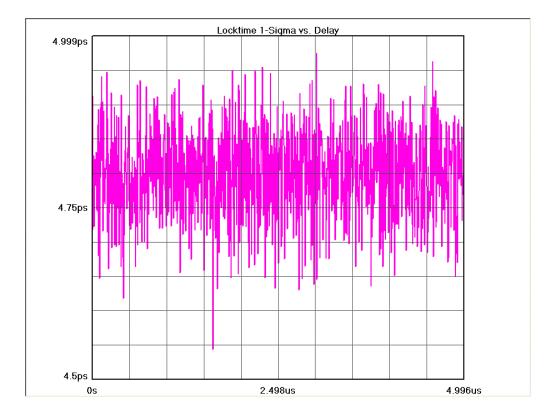


FFT

The user is able to see the frequency and power of the measured Function.

Vertical axis shows the power in dBs or time from the FFT of the Time View.

Horizontal axis shows Frequency. The cursor coordinates on the bottom status line show power in dBs or time.

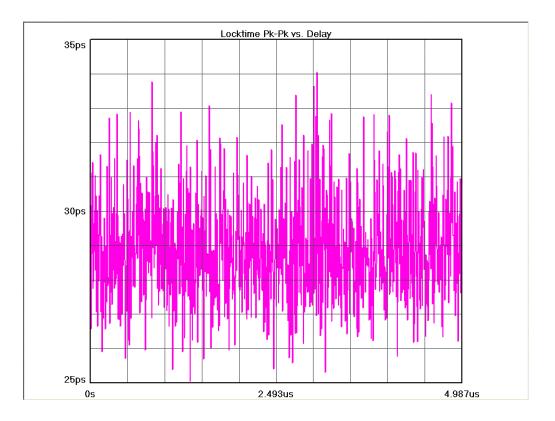


I-SIGMA

Each point on the plot represents the 1-sigma value from a histogram of measurements. The user is able to see how the 1-sigma of the measured Function changes after an Arm signal.

Vertical axis shows the 1-sigma value from the Function being measured.

Horizontal axis shows either Time or Edge after the Arm.



PEAK-TO-PEAK

Each point on the plot represents the 1-sigma value from a histogram of measurements. The user is able to see how the *peak-to-peak* of the measured function changes after an Arm signal.

Vertical axis shows the *peak-to-peak* value from the function being measured.

Horizontal axis shows either Time or Edge after the Arm.

SUMMARY

The data represent values from a histogram of measurements.

Locktime Summary							
	Mean	Minimum	Maximum	Pk-Pk			
Period+	5.001905ns	4.994568ns	5.008065ns	13.496ps			
1-Sigma	4.798ps	4.544ps	4.974ps	430.309fs			
Pk-Pk	28.864ps	25.053ps	34.048ps	8.995ps			
	(.) [dae		()[]				
	(+) Edge	(+) Delta	(-) Edge	(-) Delta			
Max Delta	519	10.962ps	510	-13.031ps			
	V1:	-0.001953V	V2 :	-0.001953V			

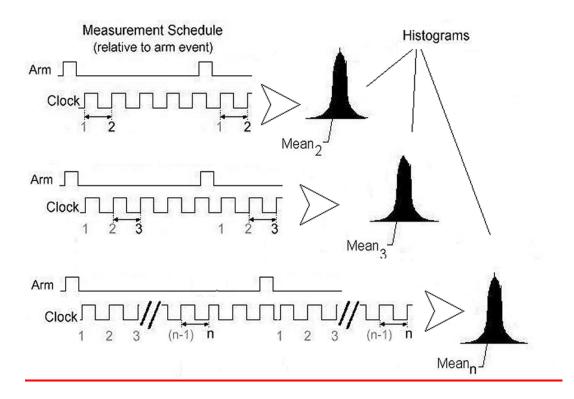
LOCKTIME THEORY

The Locktime tool is actually an automated histogram process. The tool gathers time measurements to create many histograms. Statistical information from these histograms is then plotted.

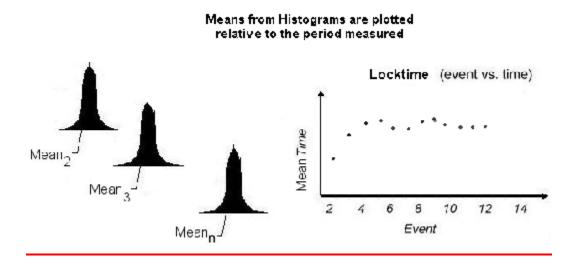
The Locktime tool uses the Arm for synchronization to a signal such as a frequency lock or power-up signal.

In short, the tool creates a histogram of measurements of Functions, for example, period, rise-time, falltime, positive pulse width, negative pulse width and frequency measurements. A histogram of time measurements, such as mean or peak-to-peak, is created of the period following the Arm. The period being measured is then incremented to the 2nd period following the Arm and a histogram is created. Then the 3rd period is measured to create a histogram and this process repeats until the Span (edges) value has been reached. The number of time measurements in each histogram is chosen by Hits per Edge. Statistical information from these histograms is then plotted relative to the corresponding period. So in View, if Time is chosen, the mean (y-axis) is plotted relative to the period after the arm (x-axis). Similarly, other Views will plot the Pk-Pk or 1-sigma values.

The Arm must be periodic in order for the measurement process to work. A single power up or a single frequency lock will not allow this process to occur. Using a signal from a pulse generator works well as the Arm and lock signal.


See in-depth description to see how the hardware and software are used to gather the information.

Then the tool automatically increments the Delay of edges from the arm and then builds a new histogram of measurements. This process is repeated until the tool reaches a value set by the user (Span). Then plots are made which relate the statistical information from a histogram (1-sigma) to which histogram it is from, or in other words, which delayed edge is represented.


IN-DEPTH DESCRIPTION

The **Locktime** tool enables the user to view the measured value of the signal, on either or both channels, with respect to its cycle count starting from some trigger/arming point supplied by a pulse generator, ATE system or circuit under test.

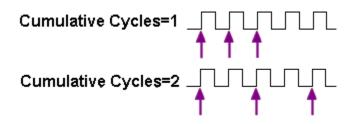
For example, the **Locktime** tool would be used to measure PLL frequency or period settling time from the point where the change was initiated.

For the period following the Arm, a histogram of time measurements is created. The period being measured is then incremented to the 2nd period following the arm and a histogram is created. Then the 3rd period is repeatedly sampled to create a histogram and this process repeats until the Span (edges) value has been reached. The number of time measurements in each histogram is chosen by Hits per Edge.

Statistical information from these histograms is plotted relative to the corresponding period. If Time view is chosen, the mean (from each histogram) is plotted on the y-axis relative to the period after the arm (x-axis). Similarly, other Views will plot the Pk-Pk or 1-sigma values on the y-axis.

The Arm must be periodic in order for the measurement process to work. A single power up or a single frequency lock will not allow this process to occur. Using a signal from a pulse generator works well as the Arm and lock signal.

Locktime can also display measurements as a function of time by selecting that option in the View window. Also the user may want to view the derivative of each consecutive measurement with respect to the last measurement. To do that, the user can select Show Derivative on the Dialog Bar. At the bottom of the graph are the functions and jitter statistics for the displayed data.

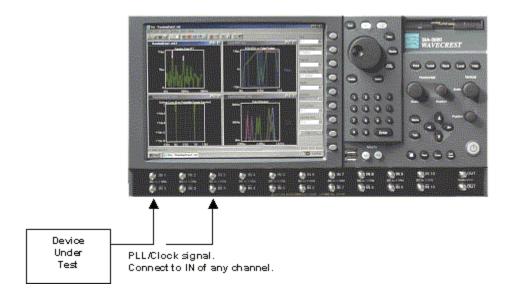

The Locktime tool arming uses a 19-21ns Arm Delay.

One of the main features of *GigaView* software is the ability to view any of the measurement functions using the Locktime tool. For example, in addition to period and frequency being viewed, pulse width, rise/fall times and the delay between channels can also be viewed for these pattern dependent anomalies.

CYCLE-TO-CYCLE TOOL *Tool is not available in GigaView 2.0 or later*

OVERVIEW

The Cycle-to-Cycle tool will display a histogram of the difference between two adjacent cycles of a clock.



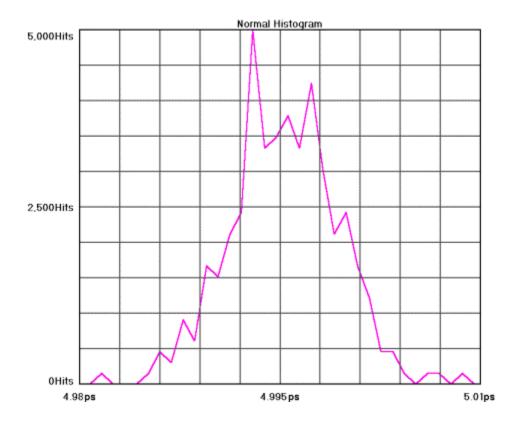
MAKING A CYCLE-TO-CYCLE MEASUREMENT

SETUP DIRECTIONS

Connect the clock source to be analyzed to a measurement channel. From the front panel, verify under 'Acquire Options' that the correct measurement channel is set. Press pulsefind and single acquire.

- Verify that a signal is connected to an input and that the proper channel is chosen in the menu.
- On the top toolbar press Pulse Find . Verify the voltage levels and close out the pulse find box.
- Press the Single Acquire button or press the Run/Cycle button allowing the instrument to accumulate a continuous series of measurements.
- Press the Single Acquire button 🖻 or the Stop button 🥮 to stop the cycling process.

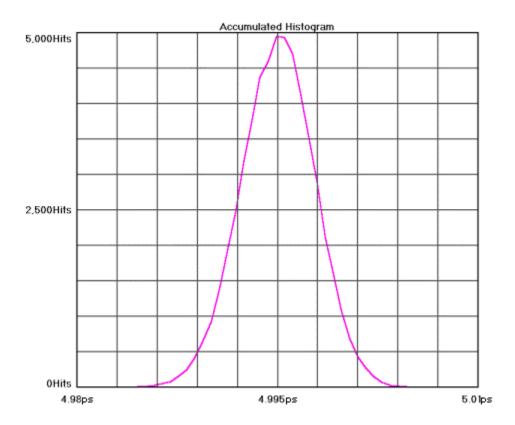
INTERPRETING VIEWS (PLOTS) *Tool is not available in GigaView 2.0 or later*


- Norm Adjacent Shows a single histogram of the most recently acquired measurements.
- Acum Adjacent Shows a histogram of all measurements made since a 'Clear'. Pressing "run" will continuously acquire measurements.
- Maxi Adjacent Shows a histogram of the most recently acquired measurements and an overall envelope of all measurements made since a 'Clear'.
- Bathtub Shows a bathtub curve
- Summary Displays text of measurement values.

NORM ADJACENT

This view shows the results of a single acquire of time measurements displayed as a histogram.

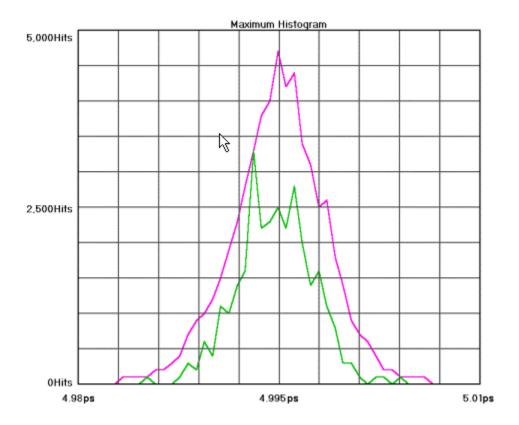
Horizontal x-axis shows Time.


Vertical y-axis shows the number of measurements (Hits per edge).

ACUM ADJACENT

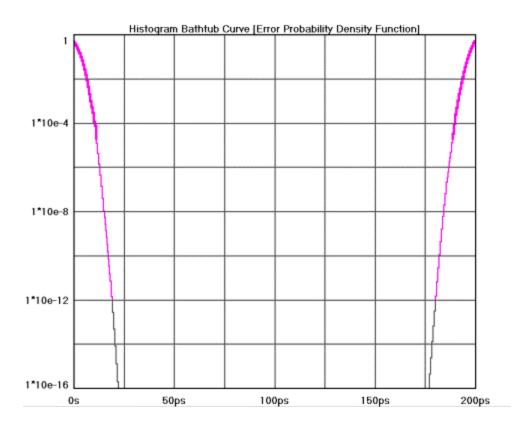
This view shows the results of running acquires or multiple single acquires of time measurements displayed as a histogram. The statistics and plot relate to all measurements taken since the last clear. Horizontal x-axis shows Time.

Vertical y-axis shows the number of measurements (hits per edge).



MAXI ADJACENT

This view shows the Maximum number of hits per edge displayed as a histogram. Multiple acquires will only change the plot if the hits per edge for a given time exceeded the values from a previous acquire. It can be thought of as a maximum envelope of time measurements.

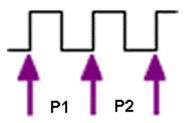

Horizontal x-axis shows Time.

Vertical y-axis shows the number of measurements (hits per edge).

BATHTUB

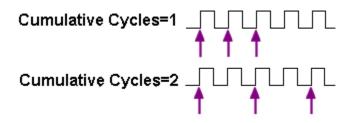
Bathtub Curve is also referred to as an "error probability density plot". This plot is derived from a convolution of DJ and RJ values from TailFit. The plot shows a view of the long-term reliability of the signal under test. Total Jitter (TJ) is extracted directly from this plot and is a pk-pk value at a specific bit error rate or number of clock cycles. The TJ value is read from the curve at the point that the color turns to gray.

SUMMARY


A text output is shown. The "Normal" row shows statistics from the normal histogram view. "Accum" row shows statistics from the accumulated histogram view. V1 and V2 show the voltage thresholds for the measurements.

If Duty Cycle is enabled, it will be displayed here. If TailFit is enabled, results will be displayed here.

Adjacent Cycle	e Summary					
	Period (+)	Minimum	Maximum	1-Sigma	Pk-Pk	Hits
Normal	-32.942ps	-45.71ps	-22.436ps	4.897 ps	23.274ps	150
Accum	-34.69ps	-58.549ps	-18.192ps	4.987 ps	40.357ps	50,700
Meas Normal	Os	Os	Os	Os	Os	300
Meas Accum	Os	Os	Os	Os	Os	101,400
V1: 0.0058	859V V2:	0.005859V				
Duty Cycle 50.659041%	Minimum 51.564125%	Maximum 51.073636%	Average			
		51.073636%	5			
50.659041%	51.564125%		Average DJpk-pk 1.048ps			
50.659041% Lt-rmsJ	51.564125% Rt-rmsJ 4.033ps	51.073636% Avg-rmsJ	DJpk-pk			
50.659041% Lt-rmsJ 5.697 ps	51.564125% Rt-rmsJ 4.033ps	51.073636% Avg-rmsJ 4.865ps	DJpk-pk 1.048ps			


CYCLE-TO-CYCLE THEORY *TOOL IS NOT AVAILABLE IN GIGAVIEW 2.0 OR LATER*

The measurements made are basically the same as a period measurement for a histogram. Rather than capturing two edges, three edges are captured and the difference of the two periods is a sample in the histogram (P2-P1).

See Histogram Theory.

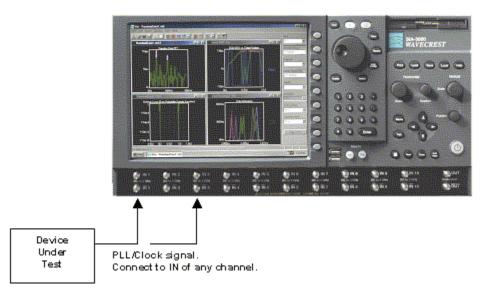
By changing the "cumulative cycles" value, the difference between a number of periods can be measured.

DRCG TOOL *Tool is not available in GigaView 2.0 or later*

APPLICATIONS OF DRCG TOOL

• Characterize the effect of the second phase aligner stage of the DRCG on a cycle-by-cycle basis as specified in the Rambus® DRCG specification.

OVERVIEW

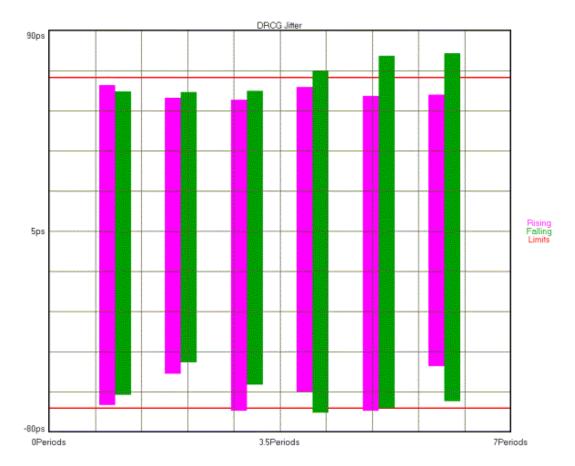

The purpose of this tool is to provide an easy to use graphical user interface for the analysis, debug and characterization of clock signals using Adjacent Cycle Jitter Statistics as required for Rambus® DRCG devices. The tool takes advantage of the SIA's unique capability of measuring precision time intervals of sequential timing events. Through precision capture of adjacent time intervals, the user can accurately understand the cycle by cycle period adjustments various hardware in the clock generation circuit are doing.

MAKING A DRCG MEASUREMENT *Tool is not available in GigaView 2.0 or later*

SETUP DIRECTIONS

Connect the clock source to be analyzed to a measurement channel. From the front panel, verify under 'Acquire Options' that the correct measurement channel is set. Press pulsefind and single acquire.

- Verify that a signal is connected to an input channel and that the proper channel is chosen in the menu.
- On the top toolbar press Pulse Find . Verify the voltage levels and close out the pulse find box.
- Press the Single Acquire button Press the Run/Cycle button allowing the instrument to accumulate a continuous series of measurements.
- Press the Single Acquire button 🖻 or the Stop button 🖭 to stop the cycling process.

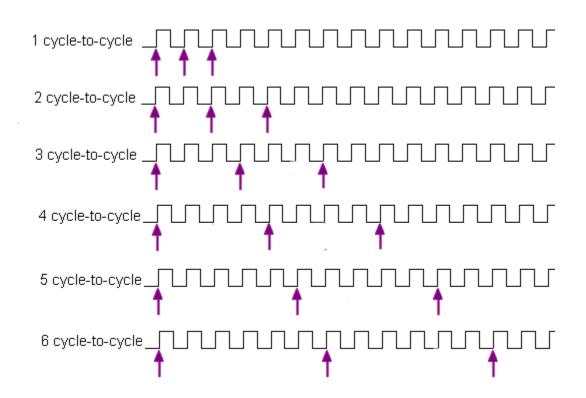


INTERPRETING DRCG VIEWS (PLOTS) *Tool is not available in GigaView 2.0 or later*

- Jitter Plot
- Summary

DRCG JITTER PLOT

This plot shows the worst-case measurements low or high for both rising and falling edge measurements for each adjacent group of periods. The x-axis shows the number of periods in adjacent groups. The y-axis shows the worst-case time. Each group of periods (one through 6) has two bars that represent rising edge period measurements or falling edge period measurements.



DRCG SUMMARY VIEW

The summary view shows measured values from multiple acquisitions. Each sweep consists of 10,000 samples of the relationship specified in the row header. Each sweep has a Minimum measured value (-) and a Maximum measured value (+). Four sweeps are made. The worst Min and Max values for each relationship are then displayed in the worst column.

DRCG Summary Falling Edge Pulse 1 cycle-to-cycle (*) 2 cycle-to-cycle (*) 3 cycle-to-cycle (*) 3 cycle-to-cycle (*) 3 cycle-to-cycle (*) 4 cycle-to-cycle (*) 5 cycle-to-cycle (*) 5 cycle-to-cycle (*) 6 cycle-to-cycle (*) 6 cycle-to-cycle (*) 7 cycle-to-cycle (*) 8 cycle-to-cycle (*) 7 cycle-to-cycle (*) 8 cycle-to-cycle (*) 1 cycle-to-cycle (*) 2 cycle-to-cycle (*) 3 cycle-to-cycle (*) 3 cycle-to-cycle (*) 3 cycle-to-cycle (*) 3 cycle-to-cycle (*) 3 cycle-to-cycle (*) 5 cycle-to-cycle (*)		Sweep#1 61.186ps 56.199ps 46.345ps 65.728ps 62.035ps 64.915ps 77.533ps 59.735ps 84.892ps 72.367ps 77.319ps Sweep#1 75.182ps 78.665ps 44.446ps 50.814ps 50.814ps 64.956ps 64.956ps 68.608ps 70.948ps 86.694ps 85.256ps 67.194ps 85.256ps	Sweep#2 57.868ps 55.741ps 43.179ps 58.194ps 62.387ps 54.266ps 61.632ps 76.515ps 63.664ps 81.063ps 59.061ps 76.392ps Sweep#2 74.214ps 76.321ps 40.6ps 49.624ps 78ps 65.549ps 65.521ps 71.517ps 83.158ps 88.291ps 63.935ps 81.215 pc	Sweep#3 61.27ps 56.812ps 47.249ps 74.128ps 65.128ps 50.24ps 79.029ps 81.341ps 78.57ps 76.687ps 77.643ps Sweep#3 78.183ps 74.774ps 43.418ps 46.427ps 74.793ps 68.06ps 68.952ps 66.914ps 87.862ps 94.419ps 61.462ps	Sweep#4 59.916ps 56.75ps 49.666ps 65.788ps 56.736ps 53.602ps 70.141ps 73.28ps 73.713ps 76.805ps 58.863ps 75.161ps Sweep#4 72.614ps 44.043ps 51.789ps 82.857ps 65.206ps 68.656ps 73.942ps 90.065ps 84.627ps 62.809ps 25.1100	Worst 61.27ps 56.812ps 49.666ps 74.128ps 65.128ps 65.128ps 62.035ps 79.029ps 81.341ps 78.57ps 84.892ps 72.367ps 77.643ps Worst 78.65ps 44.446ps 51.789ps 82.857ps 68.06ps 68.952ps 73.942ps 90.065ps 94.419ps 67.194ps 67.194ps
	300.342296MHz					
-						

DRCG THEORY OF OPERATION *Tool is not available in GigaView 2.0 or later*

This tool measures the absolute difference between two adjacent periods as seen in the figure below.

10,000 measurements are made for each group. So for '1 cycle-to-cycle', 10,000 measurements are made of single adjacent periods, then the worst-case minimum difference between two periods (Period1-Period2) is displayed as '1 cycle-to-cycle (-)'. The worst-case maximum difference between two periods is displayed as '1 cycle-to-cycle (+)'. This process is then repeated for increasing numbers of periods. Results from Rising Edge measurements are shown under the "Rising Edge Pulse" heading on the summary page.

This method is also duplicated to measure falling edge periods with results displayed under "Falling Edge Pulse".

Four separate sweeps are made of the entire process to give 4 columns of values. The worst case of the four sweeps is shown under the 'Worst Case' heading. It is these values that are displayed on the "Jitter Plot". If any of these values exceed the limits, a failure is indicated.

This page intentionally left blank.

SPREAD SPECTRUM CLOCK TOOL

OVERVIEW

The Spread Spectrum Clock (SSC) tool automatically measures SSC effects on signals. The tool will measure the frequency of the SSC as well as its plus and minus parts per million (ppm) delta from a nominal frequency.

MAKING A SPREAD SPECTRUM CLOCK MEASUREMENT

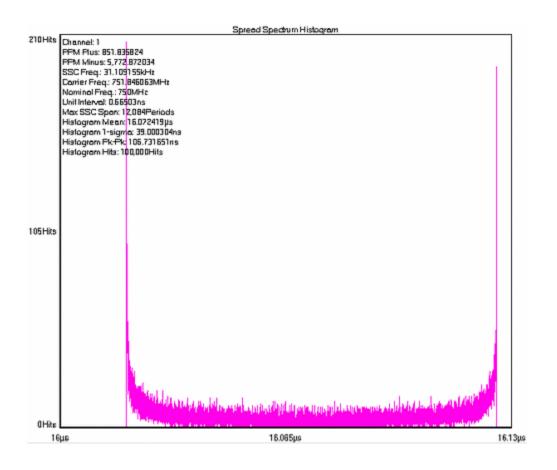
SETUP DIRECTIONS

• Connect signal to Channel 1.

Most tools default to Channel 1, however, the input channel can be changed. For single-ended measurements, use just the top input SMA leaving the bottom unconnected. For differential measurements, connect to Input and Input-.

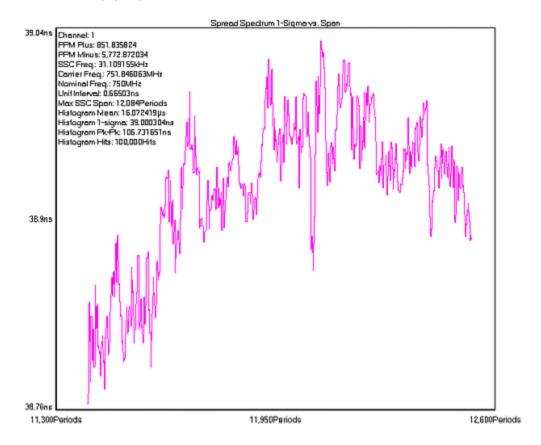
 Open the Spread Spectrum Clock tool by selecting the Clock, Other Clock Tools and Spread Spectrum Clock buttons.

• Press Single/Acquire D on the toolbar or the Single/Acquire button on the front panel. Some results require repeated runs to acquire; you can press Run to get those values.


See Interpreting Spread Spectrum Clock Views for descriptions of the different ways of displaying the measurements made by the Spread Spectrum Clock Tool.

INTERPRETING SPREAD SPECTRUM CLOCK VIEWS (PLOTS)

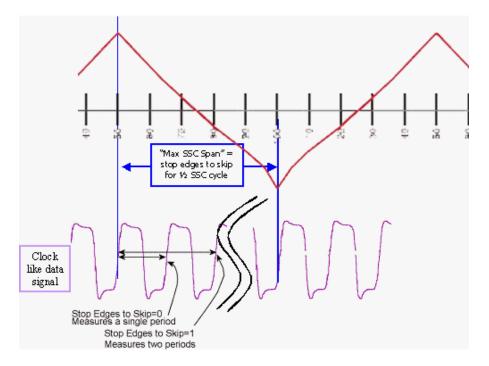
- Histogram
- 1-Sigma
- Summary


SPREAD SPECTRUM HISTOGRAM VIEW

This plot shows the PPM histogram used to calculate the SSC PPM.

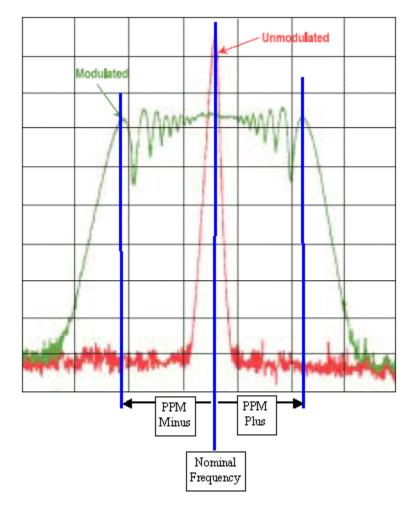
SPREAD SPECTRUM I-SIGMA VIEW

This plot show the I-sigma's for the histograms acquired between the span of 'Min SSC freq. (kHz)' and 'Max SSC freq. (kHz).


SPREAD SPECTRUM SUMMARY VIEW

This view shows the summary values for the SSC tool.

Spreod Spectrum S	ummaly
Channel	1
PPM Plus	851.835824
PPM Minus	5,772.872034
SSC Freq.	31.109155kHz
Corrier Freq.	751.846063MHz
Nominal Freq.	750MHz
Unit Interval	0.66503ns
Max SSC Span	12,084Periods
Histogram Mean	16.072419µs
Histogram 1-sigma	39.000304ns
Histogrom Pk-Pk	106.731651ns
Histogram Hits	100,000Hits


SPREAD SPECTRUM CLOCK THEORY OF OPERATION

The SSC tool will measure the appropriate number of the input clock cycles to see the maximum peak-topeak deviation due to the SSC profile (see figure below). This will be equal to the fundamental frequency divided by the frequency of $\frac{1}{2}$ the SSC cycle. The tool will search for this maximum deviation within the range of possible SSC frequencies entered in the "Max. SSC Freq. (kHz)" and "Min. SSC Freq. (kHz)" inputs.

Determining proper span for maximum deviation due to SSC modulation.

The SSC tool will then measure a histogram of this span and determine the PPM deviation form the input "Nominal Freq. (MHz)". The figure below shows what this corresponds to in the frequency domain.

PPM delta from nominal frequency

DATA TOOLS

DATA TOOLS OVERVIEW

There are different tools available for measuring data signals. Each tool requires specific signal types to provide measurements. Choosing the right tool depends on what signals you have or are capable of producing and what information you wish to get from the tool. Each tool section includes a table that shows which measurements are made by each tool, the Views available, the signal types and benefits and disadvantages of using a particular tool.

KNOWN PATTERN WITH MARKER

This tool provides the fastest, most complete measurements for compliance testing. Histograms of every edge in the pattern are made in order to determine DCD+ISI. Spectral content is measured to determine PJ contribution and in the presence of significant PJ, TailFit can be enabled to determine a more accurate RJ. TJ is based on the convolution of DJ and RJ values.

RANDOM DATA WITH BIT CLOCK

This tool makes measurements relative to a bit-clock. Therefore modulation or PJ cannot be determined. Similarly because the histogram is composed of many different data transitions, the DCD+ISI value is not directly determined. The DJ, RJ and TJ values are determined from a TailFit on the histogram of Rising and Falling data edges.

RANDOM DATA WITH NO MARKER

This tool analyzes a single data signal. Because there is no bit clock or marker, the bit rate must be entered in this tool very accurately. The measurement then assumes that this is the ideal bit rate and measures the data relative to that ideal time. The tool must therefore make assumptions. The Reported DCD+ISI value is the pk-to-pk of the histogram of Rising and falling data edges rather than the worst-case pk-pk values of the histograms of each edge (as it is in Known Pattern with Marker). The PJ components can be seen on the FFT but the actual value of PJ is not displayed due to the presence of frequency components from the data in addition to jitter. TJ is then only composed of the DJ from the histogram and the 1sigma RJ. Additionally, this tool can take up to 30 minutes to complete an acquisition.

KNOWN PATTERN WITH BIT CLOCK AND MARKER

In addition to the data signal to be analyzed, this tool requires a pattern connected to an Arm channel, along with a bit clock supplied to another channel. If your system has a PM-50 card installed, you can connect the data signal directly to channel 1. The Bit clock can either be generated internal to the SIA (if you have the Clock to Data Recovery module installed on your system) or from an external source. The marker signal has an edge relative to the same bit of the pattern each time the marker occurs. Since a bit clock is also used, the ideal UI width is measured not calculated.

KNOWN PATTERN WITH MARKER

APPLICATIONS OF KNOWN PATTERN WITH MARKER TOOL

- Show Jitter and its components on a pattern relative to its ideal position
- Analyze a data pattern and decompose or separate the various jitter components so the designer can better understand and improve system performance
- Measure the deterministic components: Duty-Cycle Distortion and Inter-symbol Interference (DCD+ISI), Periodic Jitter (PJ), Bounded Uncorrelated Jitter (BUJ), Deterministic Jitter (DJ)
- Measure the Gaussian—or Random Jitter (RJ) component
- View DCD+ISI relative to pattern transition density
- Compliance testing Fibre Channel and Gigabit Ethernet devices
- Advanced (not covered in this guide): view jitter data and model the signal as seen by the receiver, filtering RJ and PJ or altering acquisition configuration

This tool provides the fastest, most complete measurements for compliance testing. Histograms of every edge in the pattern are made in order to determine DCD+ISI. Spectral content is measured to determine PJ contribution and in the presence of significant PJ, TailFit can be enabled to determine a more accurate RJ. TJ is based on the convolution of DJ and RJ values.

To use this tool, you will need:

(1) A known repeating pattern (k28.5, PRBS2^7-1, CJTPAT, custom user pattern, etc)

(2) A pattern marker, which is a separate signal that has one edge per pattern repeat. This signal does not need to be at a particular part of the pattern (like start of pattern) but it must always maintain the same relative position to a particular point in the pattern (it is synced or not moving with respect to the pattern. Many Data Pattern generators can create this signal as a "trigger").

Data			
Pattern Marker			

MEASURMENTS KPWM CAN MAKE

DCD + DDJ	PJ	DJ	RJ	ΤJ	Views (Plots)
Х	Х	Х	Х	Х	DCD+ISI Histogram
					DCD+ISI vs. Span
					1 Sigma
					FFT Bathtub
					UI Distribution
					Summary

Signal Requirements (1) Repeating, known data pattern (2) Pattern Marker signal

Benefits

- Measure Data Jitter relative to ideal data pattern (not to a reference signal)
- Shows the most components of jitter
- Spectral content of jitter

Compliance Testing

- DCD+ISI (DDJ)
- RJ (accumulated effects)
- Speed

Disadvantages

Need to provide a markerNeed a repeating pattern

MAKING A KPWM MEASUREMENT

SETUP DIRECTIONS

This tool requires the signal under test to be a repeating pattern. Internally, the tool creates a "Pattern Trigger" or "Pattern Sync" for analysis. In some cases, a unique pattern is used that is not in the SIA-4000 library, or the pattern is longer than what the SIA will automatically detect. These unique cases are described later in the document.

- Connect a repeating data signal to Channel 1.
- From the main KPWM menu, press Acquire Options.
- Press Arm Number. A Dialog Box will open. Ensure Channel 1 is selected and Pattern Marker is checked.
- Press Add/Del Channel and ensure Channel 1 is checked.

The –3dB corner frequency default is the bit rate/1667. This is the PLL characteristic of many Serdes devices. To enter a manual corner frequency choose User Defined and enter the corner frequency.

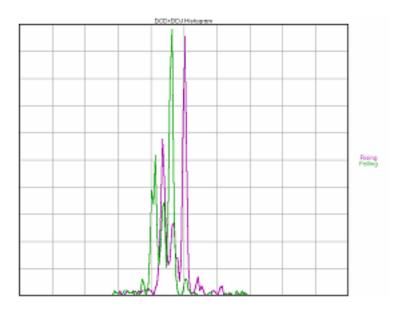
- Press Pulse Find. It is important to perform pulse find. This sets the voltage threshold at which jitter is measured.
- Press Pattern Options.

Figure 2 - Connection and Arm Number

- Press Detect Pattern. This will detect the pattern present. Patterns longer than 2048 edges cannot be automatically detected. An example would be a PRBS 2^15-1 pattern. For these patterns, you must load it from the library on the SIA-4000. Press Load Pattern to load the *.ptn file. If your pattern is not preloaded, it is possible to learn it; see details on page 7.
- Now you can make your Measurement: Press Acquire 🖻 or Single/Stop on the front panel.

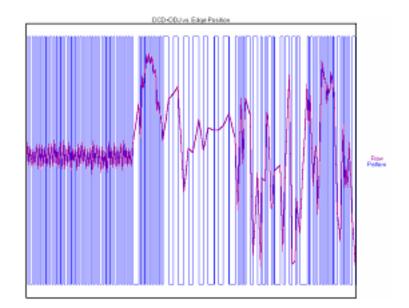
POSSIBLE ERRORS AND SOLUTIONS

"Failed bit rate calc – bad pattern or signal" This error generally indicates that the pattern that the instrument is measuring at the input channel is not the same as the pattern chosen. Check that the signal is present and the input pattern matches the chosen pattern.

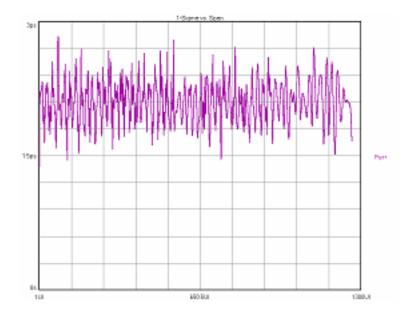

"Failed DDJ Measure – bad pattern or signal" This error generally indicates that the pattern that the instrument is measuring at the input channel is not the same as the pattern chosen. Check that the signal is present and the input pattern matches the chosen pattern.

INTERPRETING KPWM VIEWS (PLOTS)

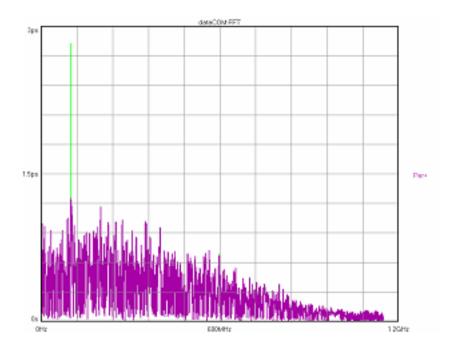
- DCD+ISI Hist view UI vs. # of measurements
- DCD+ISI vs. Span view time vs. edge of pattern
- 1-Sigma view time vs. UI span in #edges
- FFT view time vs. frequency content of jitter
- Bathtub view UI vs. probability of error
- UI Distribution view # of measurements vs. edge of pattern
- Summary view view data in a text format and save user notes


DCD + ISI HISTOGRAM

This view displays the "normalized accumulation" of all the DCD+ISI measurements taken during each run. The width of this plot is normalized to one Unit Interval of the data period. Ideally, all measurements would fall at zero on the x-axis with no jitter present. In actuality, the measurements show a distribution of measured times. There are two histograms plotted, one for rising and one for falling edges of the data pattern. There is often a difference in the absolute time of rising edges vs. falling edges. An indication of DCD or Duty Cycle Distortion—a difference in the width of a '1' vs. a '0'— can be seen when the two histograms are not over one another but have some distance between them.


DCD + ISI VS. SPAN

This view plots the DCD+ISI relative to the pattern. The "Pattern" line shows a representation of the entire pattern—zooming in on any edge will show three line that represent the min, mean, and max time measurements from the histogram of each edge. The "Raw" line shows how the measured mean varied from the Ideal UI. The y-axis pk-pk is the value reported for DCD+ISI in the statistics area. This plot also shows how the transition density affects jitter. Bandwidth limiting effects on the signal, as well as reflections, can be identified using this plot.


I-SIGMA VIEW

This view shows the 1-sigma values for the histograms of each binned UI measurement, allowing jitter accumulation to be seen. If modulation is present, it shows up as a periodic variation of 1-sigma values. As a default, TailFit is applied across this plot to determine RJ, otherwise PJ would inflate the RJ value. This plot is the basis of the FFT. When there is a PLL imbedded in the device transmitting the data, a characteristic curve is often present.

FFT VIEW

This is the FFT of the Autocorrelation of the variance from the 1-sigma view. This plot shows the spectral power density of the uncorrelated jitter frequencies from the corner frequency specified to the Nyquist of the Bit Rate. The largest peak is displayed as the Periodic Jitter (PJ) number in the statistics area.

BATHTUB CURVE VIEW

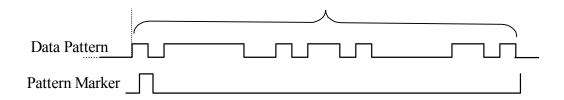
This is referred to as the "error probability density plot" of a data signal. The plot is normalized to one UI. The TJ number in the statistics area is derived from this plot.

The thick part of the line represents actual measurements. The thin part indicates extrapolated information based on RJ and DJ values. The color stops at the BER that TJ is determined.

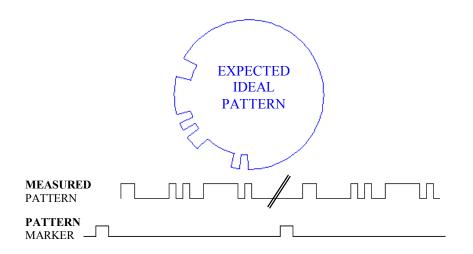
deteCOM Bethub Carve (Enor Proteebility Density Function)				
				Per

SUMMARY

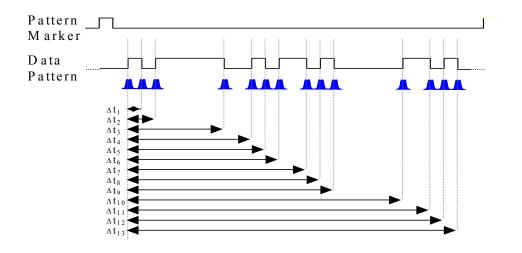
The summary page shows the jitter results that were measured. It is helpful to look at all of the views associated with the measurement. Jitter is complex, and cannot easily be understood with one number.


- TJ results correspond to the Bathtub curve.
- DCD+ISI results correspond to the DCD+ISI Histogram and DCD+ISI vs. Span.
- PJ is shown in the FFT view.
- DJ and RJ are related to the FFT and 1-sigma vs. span views.

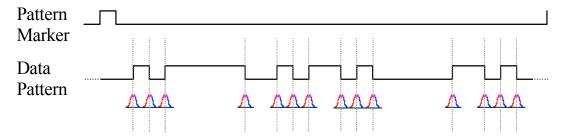
Known Pattern w/		
-	CH1	
Per+		
TJ CT	38.531ps	
DCD + ISI	27.972ps	
PJ (pk-pk)	0.689ps	
DJ (pk-pk)	28.661ps	
RJ (1-sigma)	0.77ps	
Voltage	-1.634mV	
Bit Rate	3.199934Gbit/s	
Per+ FFT Spikes	0.7ps/7.4MHz	
-	0.6ps/1.5MHz	
	0.6ps/50.6MHz	
	0.5ps/1.1GHz	
	0.5ps/461.5MHz	


KNOWN PATTERN WITH MARKER THEORY

This section will give a basic overview of the methodology behind the KPWM measurement. In addition to the data signal to be analyzed, this tool requires a pattern marker to be connected to the Arm Channel. The Marker signal has an edge relative to the same bit of the pattern each time the marker occurs. Since no bit-clock is used, analysis of jitter is independent of clock-jitter effects, and because the Arm is not a trigger, any jitter on the marker will not transfer to the measurement of the Data.


The following steps are performed automatically when a measurement is acquired using this tool. The first step is to accurately measure the Unit Interval (UI). This is done by making a series of pattern length measurements, calculating the mean and dividing that time by the length of the pattern in UI. This results in the Average or ideal UI and an accurate bit rate. Subsequent measurements and analysis will compare to this ideal UI and the jitter is displayed as the deviation from this ideal bit time.

After the UI measurement, a pattern match of the data must be done to identify the measured data stream relative to the expected bit sequence as well as the phase relationship to the pattern marker. This eliminates the need to have the pattern marker at the beginning of the expected pattern. The expected pattern is rotated against the measured pattern until it matches.



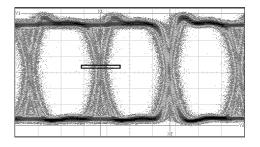
Next, the total DCD+ISI is calculated. Histograms are made of every edge in the pattern. The mean values of these histograms are compared to the ideal edge locations. The measured mean location is subtracted from the calculated ideal edge location. The worst-case positive edge location is added to the worst-case negative edge location giving the total DCD+ISI. This can also be thought of as comparing the earliest edge to the latest edge.

Lastly, data is gathered to show PJ and RJ frequency components. PJ and RJ components are determined by taking the variance of timing measurements from the histogram at each UI. The variance is the square of the standard deviation of the histogram at each UI. If any "holes" in the variance record exists, they will be interpolated by either a cubic or linear fit. The plot of the variance versus UI (1-Sigma view) is the autocorrelation of the periodic and random jitter. Refer to the "High Frequency Modulation" Getting Started Guide for further information about this concept.

An FFT of the autocorrelation function is used to determine the periodic components. The Fast Fourier transform of the autocorrelation function is commonly referred to as the power spectral density or power spectrum. The largest magnitude periodic component represents the PJ contribution to TJ. The RJ component is determined by subtracting the spectral components, summing the background then taking the square root to provide a 1-sigma value.

Optionally, TailFit allows the accurate determination of random jitter when there is a significant amount of periodic jitter. Refer to Histogram Getting Started Guide for more about TailFit and RJ.

This page intentionally left blank.

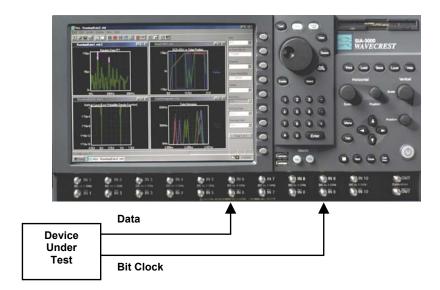

RANDOM DATA WITH BIT CLOCK

This tool makes measurements relative to a bit-clock. Therefore modulation or PJ cannot be determined. Similarly because the histogram is composed of many different data transitions, the DCD+ISI value is not directly determined. The DJ, RJ and TJ values are determined from a TailFit on the histogram of Rising and Falling data edges.

To use this tool, you will need:

- (1) A data signal
- (2) A synchronous bit clock

This measurement is similar to that made by a scope using the bit clock as a trigger and analyzing a particular data crossing point histogram.(above example). This tool is able to give more information and separate the histograms of rising data edges and falling data edges.


MEASUREMENTS RDWBC CAN MAKE

DCD + DDJ	PJ	DJ X	RJ X	тј Х	Views (Plots) Histogram Probability Bathtub Summary		
Signal Requirements (1)Data Pattern (2)Bit Clock							
Benefits		Compare t leasure re		•	ing point histogram lock		
Disadvantages	0 • F • N	n data)	of ope Il inforn	ration ma nation	er will affect measurements ay be limited by hardware		

MAKING A RDBC MEASUREMENT

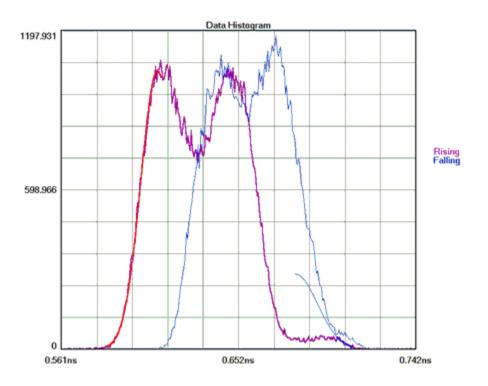
RANDOM DATA W/BIT CLOCK SETUP DIRECTIONS

- Verify the proper input signal levels.
- Connect the data signal to any open channel input.
- Connect the bit clock to any open channel input.

INTERPRETING RDWBC VIEWS (PLOTS)

- Histogram
- Probability
- Bathtub
- Summary

HISTOGRAM VIEW

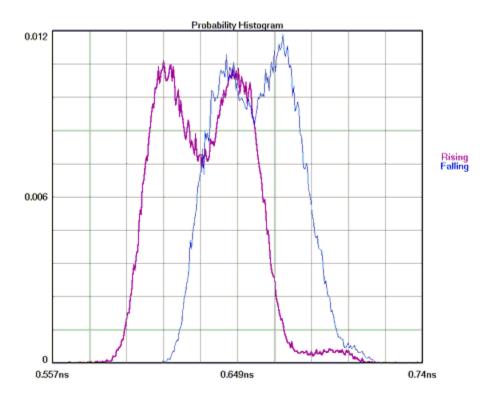

Histograms of Data Rising and Falling edge times measured from the Reference Edge of the Bit Clock are plotted.

Horizontal x-axis shows time (from Reference Edge of Bit Clock).

Vertical y-axis shows the number of Hits.

Cursor coordinates are displayed on the bottom status line.

This plot has TailFit enabled. The red curve on the left and the blue curve on the right indicate the Gaussian curves used for RJ and DJ separation.


PROBABILITY HISTOGRAM VIEW

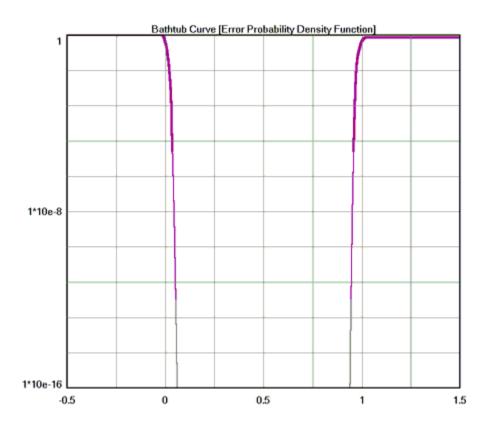
Histograms of Data Rising and Falling edge times measured from the Reference Edge of the Bit Clock are plotted.

Horizontal x-axis shows time (from Reference Edge of Bit Clock).

Vertical y-axis shows the Probability of a Hit.

Cursor coordinates are displayed on the bottom status line.

BATHTUB VIEW


This plot is derived from the TailFit. Using RJ and DJ information it shows a TJ value at a specified Bit Error Rate (BER default is $1*10^{-12}$). The thick part of the line indicates measured values; the thin part indicates calculated values. The color stops at the BER where TJ is determined.

The plot gives the user information about failure (when the lines cross) and margin, if the part fails below the specified BER.

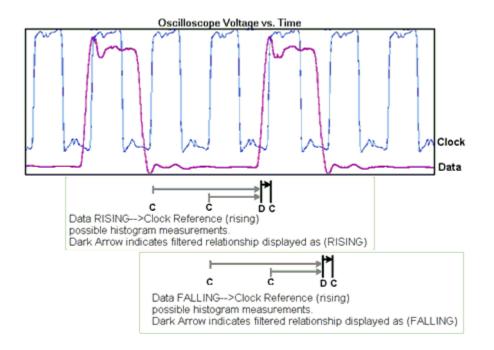
Horizontal x-axis shows Time (of one unit interval) or Unit Interval.

Vertical y-axis shows the BER.

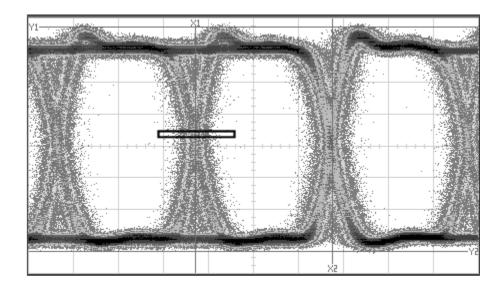
Cursor coordinates are displayed on the bottom status line.

SUMMARY

This view shows a summary of the information gathered. With TailFit enabled, DJpk-pk, Lt-rmsJ, RtrmsJ, Avg-rmsJ, and TJ are displayed. Goodness-of-fits indicates the CHI square values for the measured values and the TailFit values. V1 is the threshold of the data edge; V2 is the threshold of the clock edge.


) Jpk-pk 13.502ps \verage	Lt-rmsJ 8.437ps Goodness	Rt-rmsJ 11.167ps -of-fits	Avg-rmsJ 9.802ps 1-Sigma	TJ 201.78ps Pk-Pk	Hits 201894 Maximum	#Passes 37 Minimum
.646ns	1.509	1.875	24.03ps	199.585ps	0.754ns	0.555ns
	V1:	-0.192V	V2:	0.157V		

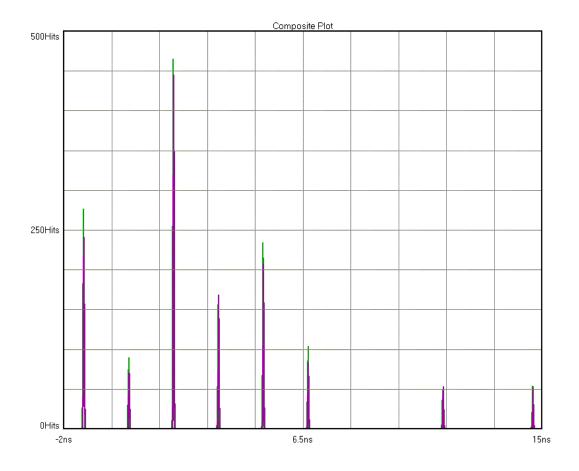
RANDOM DATA WITH BIT CLOCK THEORY OF OPERATION


This tool automates a few different operations related to the Propagation Delay/Skew Histogram.

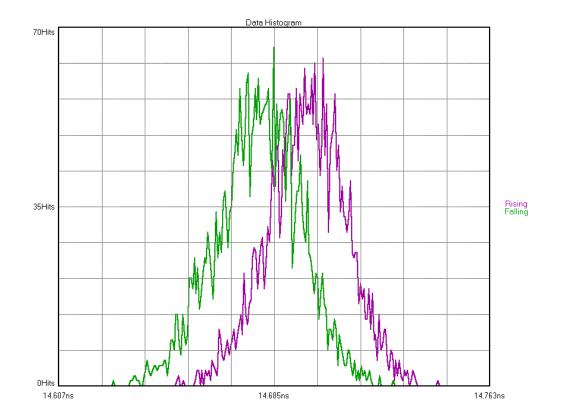
The Data signal is connected to Channel 1 and Bit Clock Signal is connected to Channel 2, therefore, two histograms can be made. One histogram represents a measurement of Data RISING edges to clock reference edge; the other represents Data FALLING edges to the clock reference edge.

These histograms would show many modes or distributions because there are many possible relationships between clock and data edges. These histograms are filtered to show only those times that relate to the measured Data edges closest in time to the Reference Clock Edge.

This tool provides results very similar to those obtained from an oscilloscope: The histogram of a particular rising/falling edge referenced to a bit-clock (see figure below). Because of the sampling method, the instrument and *GigaView* software are able to display separately the rising and falling data edge histograms.



The underlying technique for this measurement is simply a propagation delay or skew measurement from the bit clock on one channel to the data rising and falling edges on another channel. It is important to note that using this tool has the same disadvantages as the oscilloscope. For instance, jitter is measured relative to the bit clock, therefore, jitter on the clock may or may not be noticed. There is also no way to determine Data Dependent Jitter (DDJ).


Refer to the "Histogram" and "Measurement Technique" Quick Reference Guides.

IN-DEPTH THEORY

When making a propagation delay measurement, the instrument will measure various combinations of bit clock edges to different data "periods". For example, a "101" transition would give a distribution of lower values than a "110011" transition. Therefore, the resulting histograms will have many distributions separated by the time of a Unit Interval (UI).

Each of these "unwanted" portions of the histogram are filtered out to yield only the positive measurements not more than one UI from the Clock reference edge. Additionally, the output of the tool shows the data transition closest to the bit-clock reference edge. An oscilloscope has a trigger delay.

The following figure shows the Rising and Falling histograms which are the actual output of the tool.

RANDOM DATA WITH NO MARKER

APPLICATIONS

• When a marker or bit clock is not available, such as live data on a network.

This tool is useful for diagnostics, but cannot be used for compliance testing.

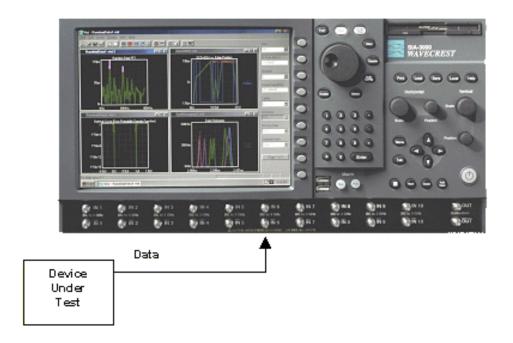
OVERVIEW

This tool analyzes a single data signal. Because there is no bit clock or marker, the bit rate must be entered in this tool very accurately. The measurement then assumes that this is the ideal bit rate and measures the data relative to that ideal time. The tool must therefore make assumptions. The reported DCD+DDJ value is the pk-to-pk of the histogram of Rising and Falling data edges rather than the worst-case pk-pk values of the histograms of each edge (as it is in Known Pattern with Marker). The PJ components can be seen on the FFT but the actual value of PJ is not displayed due to the presence of frequency components from the data in addition to jitter. TJ is then only composed of the DJ from the histogram and the 1-sigma RJ. Additionally, this tool can take up to 30 minutes to complete an acquisition.

MEASURMENTS RDWNM CAN MAKE

DCD + DDJ	PJ	DJ	RJ	τJ	Views (Plots)
		Х	Х	Х	DCD+DDJ
					1 Sigma
					FFT
					Bathtub
					Summary
Signal Requi	rements	(1) D	ata Patt	ern	

Benefits • Network/live traffic diagnostic/troubleshooting.

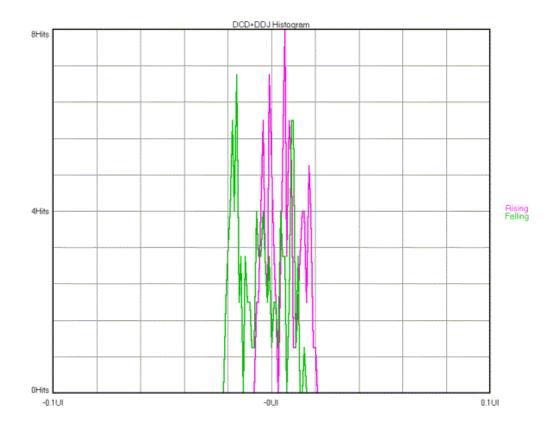

Disadvantages • Absolute measured values may not be correct because algorithms must make assumptions because the pattern is not known.

• Spectral view includes jitter AND data components.

MAKING A RANDOM DATA NO MARKER MEASUREMENT

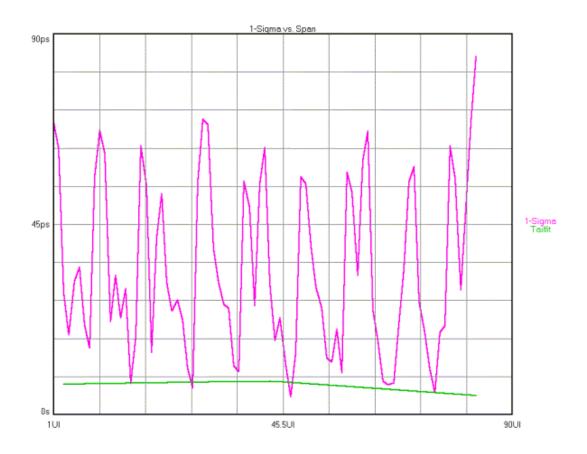
RANDOM DATA, NO MARKER SETUP DIRECTIONS

- Connect the data signal to any open measurement channel.
- Type in the correct bit-rate and press single acquire.

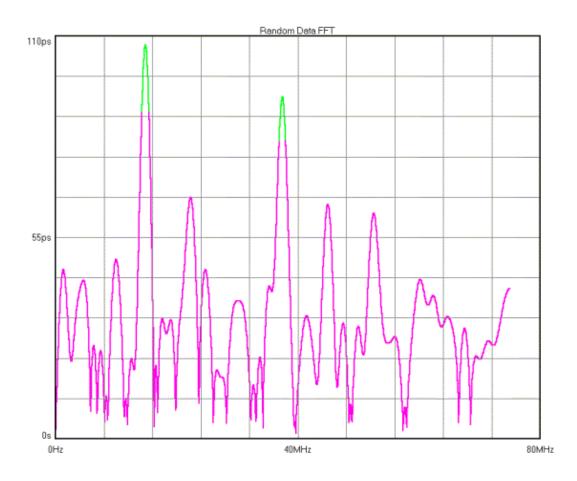


INTERPRETING RDNM VIEWS (PLOTS)

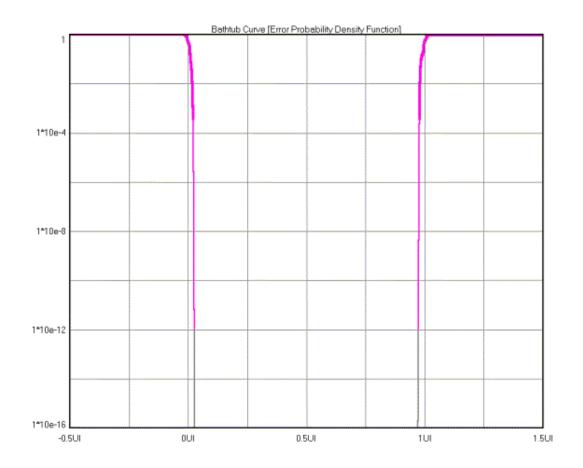
- DCD + ISI
- 1-Sigma
- FFT
- Bathtub
- Summary


DCD + ISI

Displays the "normalized accumulation" of all the Rising and Falling edge measurements taken during each run. The width of this plot is normalized to one Unit Interval of the data period. Ideally, all measurements would fall at zero on the x-axis with no jitter present. This zero value is the Ideal Unit Interval as determined calculated by the Bit Rate that was entered. In actuality, the measurements show a distribution of measured times. There are two histograms plotted, one for rising and one for falling edges of the data pattern. There is often a difference in the absolute time of rising edges vs. falling edges. An indication of DCD or Duty Cycle Distortion—a difference in the width of a '1' vs. a '0'— can be seen when the two histograms are not over one another but have some distance between them. The pk of this plot is the DCD+ISI number in the statistics area.


I-SIGMA

This is a plot showing the accumulation of jitter over increasing numbers of Unit Intervals (UI) This view shows the 1-sigma values for the histograms of each binned UI measurement. Allows the user to see jitter accumulation. Modulation present shows up as a periodic variation of 1-sigma values. This information is used by the FFT view to show the actual frequency components and amplitude of the modulation. When there is a PLL imbedded in the device transmitting the data, a characteristic curve is often present. Refer to the High Frequency Modulation Theory.


FFT

Shows Frequency components of the data. The x-axis shows frequency. The y-axis shows amplitude or power. Because this tool does not use a Marker with the data, the frequency of the jitter components cannot be separated from the frequency components of the data. Therefore, a 1/0/1 transition or an 11/00/11 transition shows up as frequency components on the FFT. These periodic components are not directly separated in the Summary table as they are in the Known Pattern with Marker Tool.

BATHTUB

Shows the "error probability density plot" of a data signal. The plot is normalized to one UI and the Total Jitter (TJ) number in the statistics area is derived from this view. The thick part of the line represents actual measurements. The thin part indicates extrapolated information based on RJ and DJ values. The point at which the color stops is the BER that TJ is determined.

SUMMARY

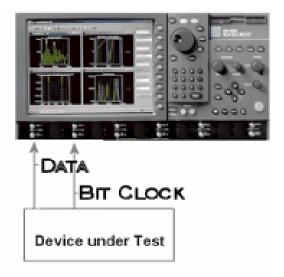
Shows the "error probability density plot" of a data signal. The plot is normalized to one UI and the Total Jitter (TJ) number in the statistics area is derived from this view. The thick part of the line represents actual measurements. The thin part indicates extrapolated information based on RJ and DJ values. The point at which the color stops is the BER that TJ is determined.

Random Data	No-Marker Sum	mary	
DCD+DDJpk-p	kRJ(1sigma) 👘	TJ	
276.966ps	6.677ps	353.273ps	
V1: RJ-Event 3 RJ-Event 43 RJ-Event 83	-0.01753∨ 7.147ps 7.912ps 4.479ps	V2 :	-0.01753V

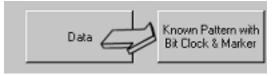
RANDOM DATA NO MARKER THEORY

This method is not as accurate as known pattern with a marker when the DCD/ISI component is large because the histogram of measurements at each multiple of the UI is comprised of different bit sequences. This could potentially increase the standard deviation for each multiple UI measurement, which in turn could inflate the autocorrelation function of RJ and PJ. TailFit is used to determine RJ. This method takes longer than known pattern with marker or random data with bit clock because a sufficient statistical sample must be taken for each UI in the data pattern. Acquiring a statistically significant data set is purely a random event for each UI and each UI may not be weighted equally in the data stream.

KNOWN PATTERN WITH BIT CLOCK AND MARKER


This tool can operate either with the Clock Recovery option installed or with an external bit clock applied to another input. A pattern marker is necessary and is possibly derived from the data pattern generator. But, in many cases, this signal is not externally available and it is useful to have the SIA Pattern Marker (PM50) option. The pattern requirements are such that it needs to be a repeating pattern.

MAKING A KPBC MEASUREMENT


KNOWN PATTERN W/ BIT CLOCK AND MARKER SETUP DIRECTIONS

This tool can operate either with the Clock Recovery option installed or with an external bit clock applied to another input. A pattern marker is necessary and is possibly derived from the data pattern generator. But, in many cases, this signal is not externally available and it is useful to have the SIA Pattern Marker (PM50) option. The pattern requirements are such that it needs to be a repeating pattern.

If you have the Clock recovery option installed, connect the SIA as shown below. The Data pattern is connected to the input of the Clock Recovery input. The Clock Recovery Data output is looped back to IN1 with the PM50 option.

From the Main Menu, press "Data" and Known Pattern with Bit Clock and Marker to open the tool.

From the main menu, you can choose if you would like to identify periodic jitter frequencies in an FFT plot.

Diagnostic FFT No FFT Fc/1667 User Defined

If you enable this feature, you have the choice of setting a -3Db HPF frequency or the tool will calculate the HPF filter setting by dividing the bit rate by 1667. The value will be displayed in the corner frequency window.

If you enable this feature, you have the choice of setting a -3Db HPF frequency or the tool will calculate the HPF filter setting by dividing the bit rate by 1667. The value will be displayed in the corner frequency window.

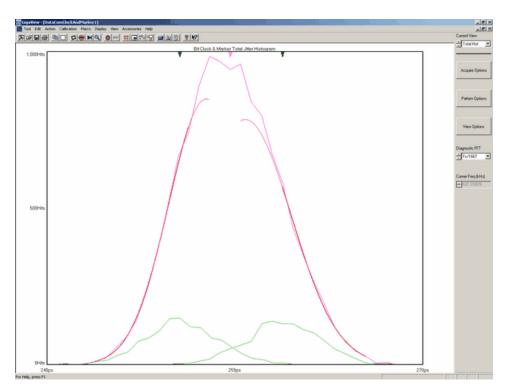
Assign your channels using the Acquire Options menu. The Reference Channel corresponds to the bit clock signal. This can either be applied from the clock recovery option or from an external bit clock. The Data Channel corresponds to the input of the repeating data signal. The Arm Number will enable the PM-50 (if installed) or, a pattern sync signal from a data pattern generator. The Arm Delay can be adjusted between 19-21 nanoseconds for the arm signal placement. The error tolerance window will allow you to set a parameter for the Edge measurements. Any measurements of an edge that exceed this Value will cause an error. The stop on success window defines the TailFit operation for quality requirements that must be met in order to successfully separate RJ and DJ. If there is a large DJ component, this may require several passes. You can enable this option and then cycle In order to accumulate until the number of hits specified is acquired.

To select a data pattern in the SIA, click on the Pattern Options button.

This will take you to the Pattern Options Dialog Bar.

Select load pattern. Once you have selected a data pattern, the pattern name will appear in the "Pattern" window.

To perform a measurement, press the "Run" button. Several views are available once the measurement is complete. All views can be displayed by changing the Current View.


INTERPRETING VIEWS (PLOTS)

- Total Histogram Shows the Clock to Data measurements.
- DCD + ISI Histogram Displays the "normalized accumulation" of all the DCD+ISI measurements
- DCD + ISI vs Span Plots the DCD+ISI relative to the pattern
- 1-Sigma Shows the 1-sigma values for many histograms
- FFT Shows the spectral power density of the uncorrelated jitter frequencies from the corner frequency specified to the Nyquist of the bit rate.
- Bathtub Error probability density plot of a data signal.
- Summary Shows textual summary of measurements taken.

TOTAL HISTOGRAM VIEW

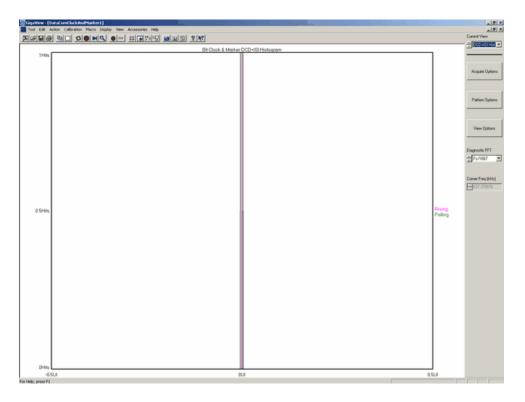
The Total Jitter Histogram view shows the Clock to Data measurements. An arrow at the center on the top of the plot indicates the mean of the Total Jitter Histogram. Two other histograms to the left and right are the histograms of edge measurements from the earliest and latest measured mean edge times. Different colored arrows at the top left and right indicate the means for each of those.

The TailFit algorithm is automatically run in this tool. The DJ reported value is determined by whichever is larger between the mean value of the worst-case histogram and the mean of the TailFit in the data pattern.

DCD + ISI HISTOGRAM VIEW

This view displays the "normalized accumulation" of all the DCD + ISI measurements taken during each acquire run.

The width of the plot is normalized to one Unit Interval of the data period.

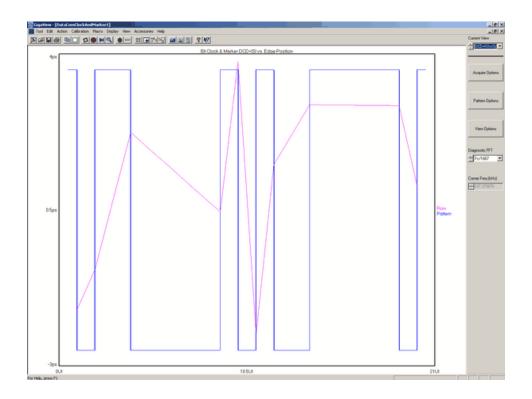

This plot shows jitter components that are correlated to the data and relates to the DCD+ISI number in the Summary view.

The plot contains two histograms, one for all the rising edges of the pattern and one for all the falling edges of the pattern. These two histograms are over laid on each other so their relative location to the ideal can be seen.

The x-axis shows time.

The y-axis shows the number of edges that accumulate in each bin of these histograms. Note that there is one value added to the plot for each edge in one pattern.

If the two histograms are not centered on the same relative time position on the x-axis, this can be an indication of DCD. It can be also be an indication that the voltage level on the input is not set to the correct value.

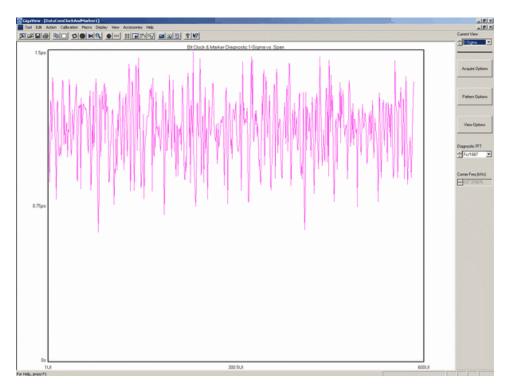


DCD + ISI VS. SPAN VIEW

This view plots the DCD+ISI relative to the pattern. It gives information about how the DCD+ISI component of jitter varies relative to bit position of the pattern. The information in the UI Distrib view is over laid on the DCD+ISI information to show where in the pattern it occurred. This plot shows jitter components that are correlated to the data and relates to the DCD+ISI number in the Summary view. A zoomed in view of this plot will show three lines at each edge position. They give an indication of the average location of each edge and the pk-pk size of all measurements taken of each edge.

The x-axis shows average edge position relative to the pattern marker.

The y-axis shows time, which is the average edge deviation from its ideal location measured from the bit clock.

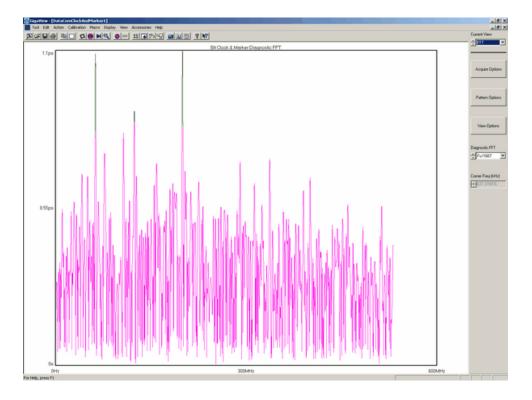

I-SIGMA VIEW

This view allows the user to see jitter modulation. It shows the 1-sigma values for many histograms. This plot shows jitter components that are NOT correlated to the data and relates to the PJ numbers in the Summary view. Refer to explanation of High Frequency Modulation Theory for more information on the measurement technique used to generate this plot.

The 1-sigma values are plotted to give the user a view of the modulation that may be causing PJ.

The x-axis shows span of accumulated edges.

The y-axis shows 1-sigma.

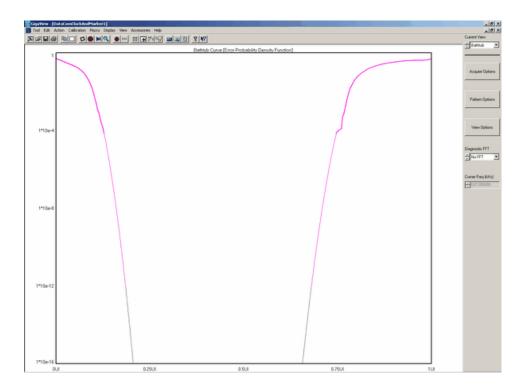


FFT VIEW

This is the FFT of the Autocorrelation of the variance from the 1-sigma view. This plot shows the spectral power density of the uncorrelated jitter frequencies from the corner frequency specified to the Nyquist of the bit rate. This plot shows jitter components that are NOT correlated to the data and relates to the PJ number in the Summary view.

The x-axis shows frequency content of the PJ with higher frequency on the right and lower frequency on the left.

The y-axis shows the amplitude or power density of the periodic components.



BATHTUB VIEW

This is referred to as the "error probability density plot" of a data signal. The plot is normalized to one UI. The TJ number in the Summary view is derived from this plot.

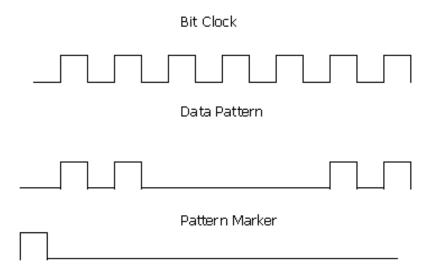
The x-axis shows 1 Unit Interval. The plotted data will be displayed between 0 and 1, a distance that represents one UI.

The y-axis shows Bit Rate from 0 at the top to 1*10e-16 at the bottom.

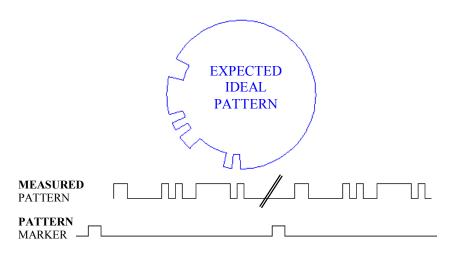
SUMMARY VIEW

This view shows measured jitter values. Each of these values relates to one of the other plots.

Bit Clock & Marker Summary Channel 1 Bit Rate 4.499939Gbit/s Histogram Hits 15,000Hits Deterministic Jitter 58.354ps Random Jitter 4ps Total Jitter 112.239ps


FFT Spikes

KNOWN PATTERN WITH BIT CLOCK AND MARKER THEORY


This section will give a basic overview of the methodology behind the Known Pattern with Bit Clock and Marker measurement tool. In addition to the data signal to be analyzed, this tool requires a pattern connected to an Arm channel along with a bit clock supplied to another channel. If your system has a PM-50 card installed, you can connect the data signal directly to channel 1. The Bit clock can either be generated internal to the SIA (if you have the Clock to Data Recovery module installed on your system) or from an external source. The marker signal has an edge relative to the same bit of the pattern each time the marker occurs. Since a bit clock is also used, the ideal UI width is measured not calculated.

The following steps are performed automatically when a measurement is acquired using this tool.

• The Unit Interval is measured directly off of the bit clock through multiple period measurements. For an in-depth description, read Histogram Theory.

Next, the total DCD+ISI is calculated. Histograms are made of every edge in the pattern. The mean
values of these histograms are compared to the ideal edge locations. The measured mean location is
subtracted from the actual edge location defined by the bit clock. The worst-case positive edge
location is added to the worst-case negative location giving the total DCD+ISI. It can also be
thought of comparing the earliest edge to the latest edge.

If you have selected to have a Diagnostic FFT performed, the PJ frequency components are determined by taking the variance of timing measurements from the histogram of each UI. The variance is the square of the standard deviation of the histogram at each UI. If any "holes" in the variance record exists, they are interpolated by either a cubic or linear fit. The plot of variance versus UI (1 – sigma view) is the autocorrelation of the periodic jitter. Refer to the "High Frequency Modulation" getting started guide for further information about this concept.

Lastly, the random and deterministic jitter is separated using the TailFit algorithm. The DJ value reported is the greater value between the mean of the tailfits and the mean of the extreme histograms. For more information on TailFit, see TailFit Theory. Also you can refer to the Histogram Tool Overview section of help.

This page intentionally left blank.

DATA STANDARDS TOOLS

PCI EXPRESS

FIBRE CHANNEL COMPLIANCE

SERIAL ATA

INFINIBAND

PCI EXPRESS TOOLS

PCI Express Gen2 Software Clock Recovery (CR) Tool

PCI Express 1.1 Software Clock Recovery (CR) Tool

PCI Express 1.1 Clock Analysis Tool

PCI Express 1.0 Tool

APPLICATIONS OF PCI EXPRESS TOOLS

- SERDES, plug in card,
- NEWCARD interface,
- Switches,
- motherboards,

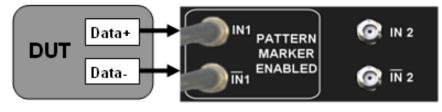
- PLL's
- clocks
- Bridges,
- Cables,

OVERVIEW

The PCI Express Tools provide both timing and amplitude compliance measurements in any environment, system or IC, electrical or optical. Compliance tests can be completed in seconds with a simple pass/fail indication for each test parameter. It is the most comprehensive and easy to use signal integrity test solution on the market today.

The PCI Express Tool accurately determines device performance by quantifying random and deterministic jitter components. In addition, the PCI Express Tool can quickly isolate and quantify unwanted deterministic jitter due to c0rosstalk and EMI with a spectral view of jitter as well as Perform eye diagram analysis for a quick qualitative view of device performance.

PCI EXPRESS GEN2 SOFTWARE CLOCK RECOVERY (CR) TOOL OVERVIEW


This tool uses the Multi-Rate Clock Recovery option. The option provides a compliant clock with characteristics as required in the PCI Express Specification. The PCI Express specification identifies a test pattern to be used for all signal integrity tests. This pattern is 40-bits long and is composed of the following bits: K28.5, D21.5, K28.5, D10.2 which is 0011111010 1010101010 1100000101 0101010101 in binary or 3eaaac1555 in Hex. This pattern is automatically loaded into the PCI Express Compliance tool. If you want to use a different pattern, it can be manually loaded into the tool by selecting the 'Pattern Options' button and then selecting the 'Load Pattern' button. You can load any of the standard compliance patterns saved on the SIA or you can load a pattern you've created using the "Known Pattern With Marker" tool.

MAKING A PCI EXPRESS GEN 2 SOFTWARE CR MEASUREMENT

SETUP DIRECTIONS

This tool does not use the hardware Clock Recovery. It will perform measurements using software algorithms to determine the compliant clock characteristics. The PCI Express specification identifies a test pattern to be used for all signal integrity tests in section 4.2.8 of the Base spec version 1.1. This pattern is 40-bits long and is composed of the following bits: K28.5, D21.5, K28.5, D10.2 which is 0011111010 101010101 1100000101 0101010101 in binary or 3eaaac1555 in Hex for single lane applications and is called the CMM pattern. For multi-lane applications a 640-bit pattern is defined. This pattern is automatically loaded into the PCI Express Compliance tool. If you want to use a different pattern, like the 40 bit single lane "pciexpress" pattern, it can be manually loaded into the tool by selecting the 'Pattern Options' button and then selecting the 'Load Pattern' button. You can load any of the standard compliance patterns saved on the SIA or you can load a pattern you've created using the "Known Pattern With Marker" tool.

• Connect the SIA as shown below.

No Clock Recovery

• From the Main Menu, press "Data Standards" and "PCI Express", then choose "PCI Express Gen2 Software CR" to open the tool (See figure below).

• Select your compliance point: Transmitter (TX Spec), Receiver (RX Spec).

Click the Pulse Find button st to automatically set the voltage levels. Then

click the Single/Acquire button . The measurement takes approximately 1 minute to complete. Several views are available once the measurement is complete. All views are displayed with the results summarized to the left of the plot. The specification value, the measured value and Pass of Fail is displayed. Additional values are displayed below. These values are not directly required for the Specification, but are useful for diagnostic purposes in the event that a test fails or only passes by a small margin. The Summary view shows the rev of the specification that the tool will measure. Many specifications continue to evolve and may change. Check to see that this is the current specification release. Change Views using the "Current View" setting. Views will change but the information on the left does not.

INTERPRETING VIEWS (PLOTS)

Oscilloscope – Shows the voltage vs. time for a portion of the pattern.

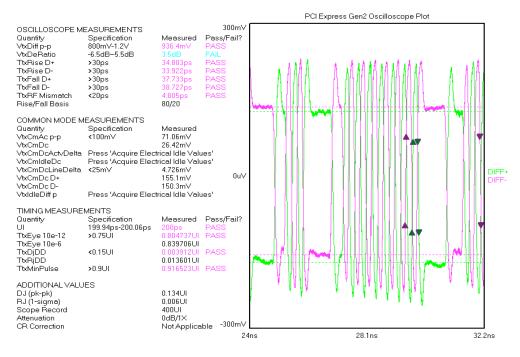
Transition Eye – Shows the transition eye.

De-emph Eye – Shows the de-emphasized eye.

DCD + ISI Histogram – Shows the DCD+ISI Histogram.

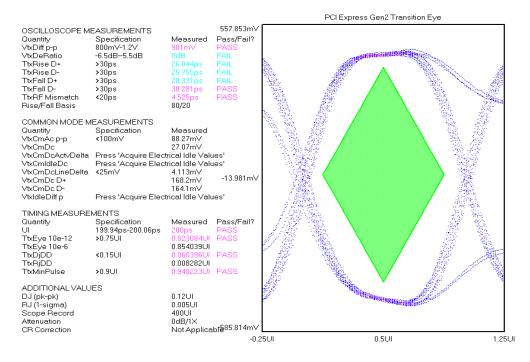
DCD + ISI vs. Span – Shows the DCD+ISI vs. Span of Unit Intervals and the effects of Data Dependent Jitter.

1-Sigma vs. Span – Shows how the 1-sigma values change over an accumulation of unit intervals.

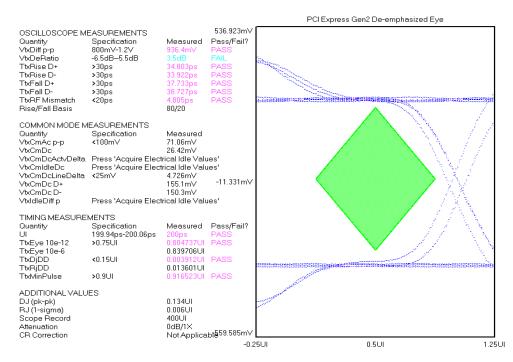

FFT – Shows an FFT of the Periodic jitter.

Bathtub – Shows the predicted Total jitter at a specific Bit Error Rate.

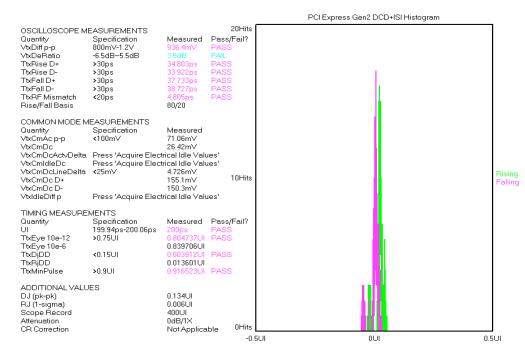
Summary – Shows a textual summary of the specifications measured along with Pass/Fail indicators.


OSCILLOSCOPE VIEW

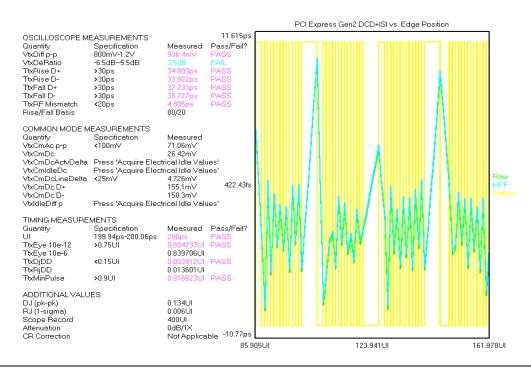
This view shows the voltage vs. time for a portion of the pattern. Measurements are summarized on the left.


TRANSITION EYE VIEW

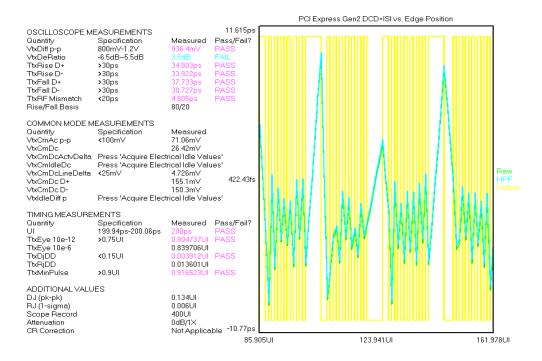
This view shows the Transition Eye. The Mask size changes depending on the compliance point at which the measurement is taken.


DE-EMPHASIZED EYE VIEW

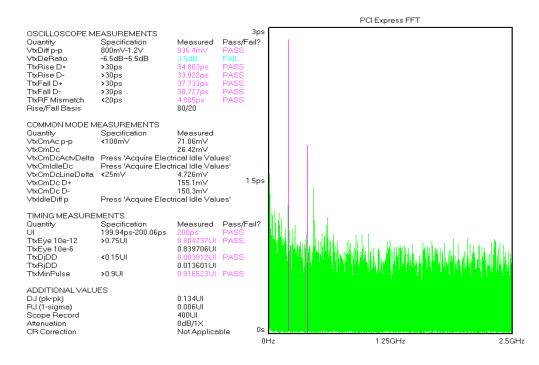
This view shows the De-emphasized Eye. The Mask size changes depending on the compliance point at which the measurement is taken. This view is unavailable for the RX Spec compliance point because an eye is not defined.


DCD + ISI HISTOGRAM VIEW

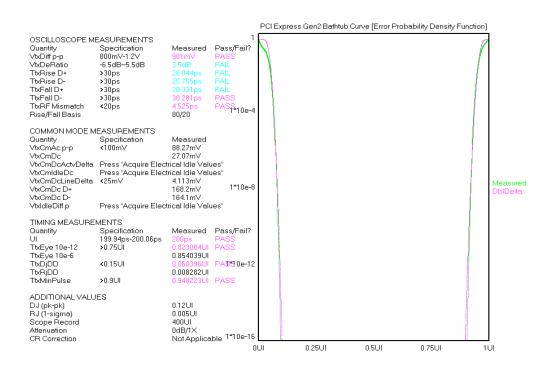
This view shows the DCD+ISI Histogram. It allows you to distinguish rising and falling edges and see the effects of Data Dependent Jitter.


DCD + ISI vs. Span View

This view shows the DCD+ISI vs. Span of Unit Intervals. This allows you to see how the DCD+ISI changes over a range of unit intervals. Zooming in on a vertical line reveals 3 lines. This represents the histogram of that edge: the center line is the Mean, the left and right show the Peak to Peak. The "raw" line shows measured DCD+ISI. The "HPF" shows the result of applying the HPF filter.


I-SIGMA VS. SPAN VIEW

The 1-sigma vs. span view shows how the 1-sigma values change over an accumulation of unit intervals. This view allows the user to see jitter modulation. It shows the 1-sigma values for many histograms. This plot shows jitter components that are NOT correlated to the data and relates to Random and Periodic jitter.


FFT VIEW

This view shows an FFT of the Periodic jitter. It allows you to help diagnose and determine the frequencies at which Periodic jitter may be a problem. Periodic jitter is often due to crosstalk from clock or data lines, or power supply noise.

BATHTUB VIEW

The Bathtub curve shows the predicted Total jitter at a specific Bit Error Rate. Bit Error Rate is displayed on the vertical axis and one UI is displayed on the horizontal. As jitter increases, the two lines will move closer to each other. Random jitter affects the slope of the lines. A small change in RJ has a larger effect on TJ than the same change in deterministic jitter. Deterministic jitter adds a constant offset and will often appear as a "shelf" on one or both of the lines.

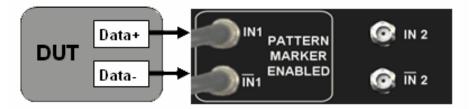
SUMMARY VIEW

Shows a textual summary of the specifications measured along with Pass/Fail indicators.

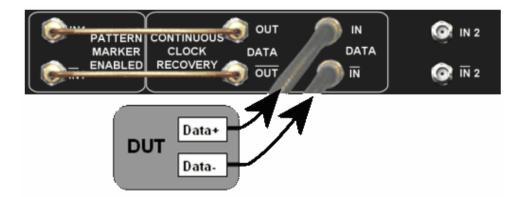
This page intentionally left blank.

PCI EXPRESS I. I SOFTWARE CLOCK RECOVERY (CR) TOOL OVERVIEW

This tool is for use with the PCI Express 1.1 specification and uses a software clock recovery. This tool does not use the hardware Clock Recovery. It will perform measurements using software algorithms to determine the compliant clock characteristics.


The PCI Express specification identifies a test pattern to be used for all signal integrity tests. This pattern is 40-bits long and is composed of the following bits: K28.5, D21.5, K28.5, D10.2 which is 0011111010 1010101010 1100000101 0101010101 in binary or 3eaaac1555 in Hex. This pattern is automatically loaded into the PCI Express Compliance tool. If you want to use a different pattern, it can be manually loaded into the tool by selecting the 'Pattern Options' button and then selecting the 'Load Pattern' button. You can load any of the standard compliance patterns saved on the SIA or you can load a pattern you've created using the "Known Pattern With Marker" tool.

MAKING A PCI EXPRESS I. I SOFTWARE CR MEASUREMENT


SETUP DIRECTIONS

This tool does not use the hardware Clock Recovery. It will perform measurements using software algorithms to determine the compliant clock characteristics.

• Connect the SIA as shown below.

NOTE: If you have a continuous clock recovery option, you may set up the test as shown below.

 When the SMA jumpers are installed, it is necessary to Check the "Voltage Correction" in the EDIT|CR Config Menu.

CR1 Type:		CR2 Type:
Continuous Rate		Not Installed
Bit Rate (Gb/s):		
2 500000	_	
Voltage Conection	R	
		ж

• From the Main Menu, press "Data Standards" and "PCI Express", then choose "PCI Express 1.1 Software CR" to open the tool.

• Select your compliance point: Transmitter (TX Spec), Receiver (RX Spec), TX add-in, RX add-in, TX System or RX system.

To perform the measurement, first, click the 'Pulse Find' button st to automatically set the voltage levels. Then click the 'Single/Acquire' button . The measurement takes approximately 1 minute to complete.

Several views are available once the measurement is complete. The specification value, the measured value and Pass or Fail is displayed. Additional values are displayed. These values are not directly required for the Specification, but are useful for diagnostic purposes in the event that a test fails or only passes by a small margin. The Summary view shows the revision of the specification that the tool will measure. Many specifications continue to evolve and may change. Check to see that this is the current specification release. Change Views using the "Current View" setting. Views will change but the information on the left does not. Below is a description of the different available views.

INTERPRETING VIEWS (PLOTS)

Oscilloscope - Shows the voltage vs. time for a portion of the pattern. Trans Eye - Shows the transition eye.

De-emph Eye – Shows the de-emphasized eye.

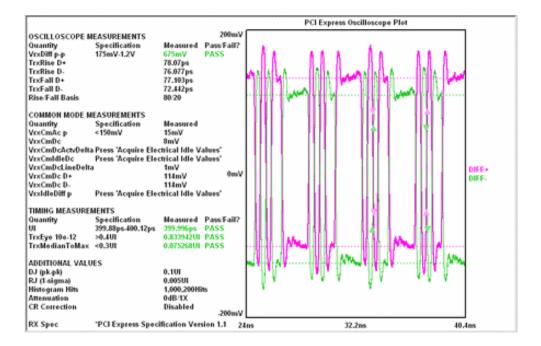
Median to Maximum Histogram - Shows a histogram of time samples measured from the Median to the Max.

DCD + ISI Histogram - Shows the DCD+ISI Histogram.

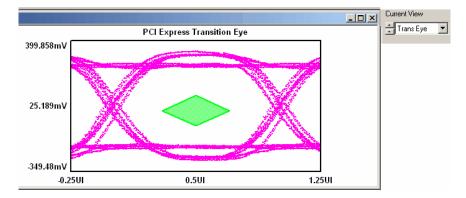

DCD + ISI vs. Span - Shows the DCD+ISI vs. Span of Unit Intervals.

1-Sigma vs. Span - Shows how the 1-sigma values change over an accumulation of unit intervals.

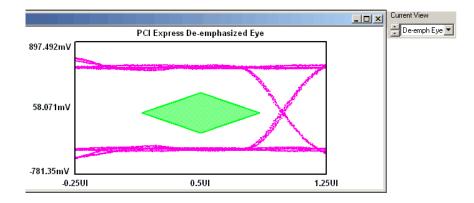
FFT - Shows an FFT of the Periodic jitter.


Bathtub Curve - Shows the predicted Total jitter at a specific Bit Error Rate.

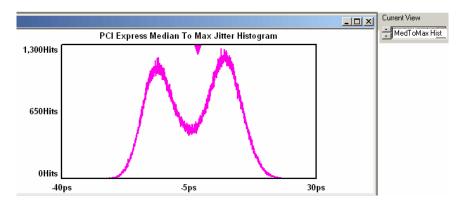
Summary - Shows a textual summary of the specifications measured along with Pass/Fail indicators.


OSCILLOSCOPE VIEW

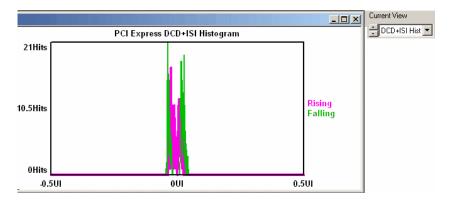
This view shows the voltage vs. time for a portion of the pattern. Measurements are summarized on the left.


TRANSITION EYE VIEW

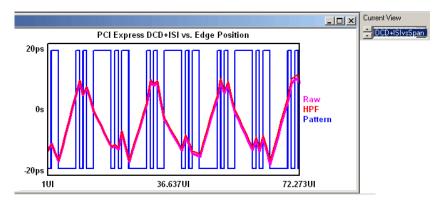
This view shows the Transition Eye. The Mask size changes depending on the compliance point at which the measurement is taken.


DE-EMPH VIEW

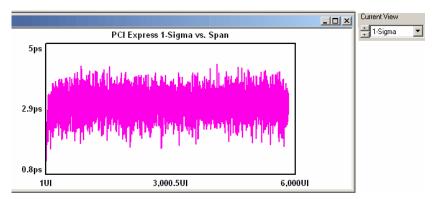
This view shows the De-emphasized Eye. The Mask size changes depending on the compliance point at which the measurement is taken. This view is unavailable for the RX Spec compliance point because an eye is not defined.


MEDIAN TO MAX HISTOGRAM VIEW

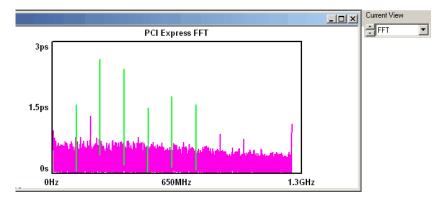
This view shows a histogram of time samples measured from the Median to the Maximum.


DCD + ISI HISTOGRAM VIEW

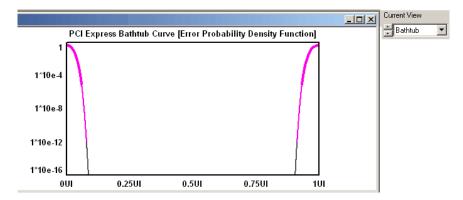
This view shows the DCD+ISI Histogram. It allows you to distinguish rising and falling edges and see the effects of Data Dependent Jitter.


DCD + ISI VS. SPAN VIEW

This view shows the DCD+ISI vs. Span of Unit Intervals. This allows you to see how the DCD+ISI changes over a range of unit intervals. Zooming in on a vertical line reveals 3 lines. This represents the histogram of that edge the center line is the Mean, the left and right show the Peak to Peak. The "raw" line shows measured DCD+ISI. The "HPF" shows the result of applying the HPF filter.


I-SIGMA VS. SPAN VIEW

The 1-sigma vs. span view shows how the 1-sigma values change over an accumulation of unit intervals. This view allows the user to see jitter modulation. It shows the 1-sigma values for many histograms. This plot shows jitter components that are NOT correlated to the data and relates to Random and Periodic jitter


FFT VIEW

This view shows an FFT of the Periodic jitter. It allows you to help diagnose and determine the frequencies at which Periodic jitter may be a problem. Periodic jitter is often due to crosstalk from clock or data lines, or power supply noise.

BATHTUB CURVE VIEW

The Bathtub curve shows the predicted Total jitter at a specific Bit Error Rate. Bit Error Rate is displayed on the vertical axis and one UI is displayed on the horizontal axis. As jitter increases, the two lines will move closer to each other. Random jitter affects the slope of the lines. A small change in RJ has a larger effect on TJ than the same change in deterministic jitter. Deterministic jitter adds a constant offset and will often appear as a "shelf" on one or both of the lines

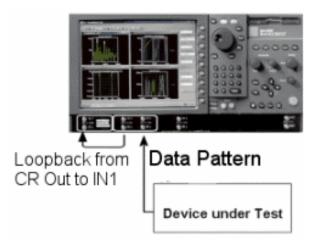
PCI EXPRESS I. I CLOCK ANALYSIS TOOL OVERVIEW

PCI Express 1.1 Card Electromechanical (CEM) specification gives the jitter requirements and testing method for the 100 MHz reference clock. The total jitters for the reference clock are specified at BER=10⁻⁶ and BER=10⁻¹², and are derived from the phase jitter distribution function after a band-pass filter function is applied. The 1.1 clock tool conducts the 100 MHz reference clock measurement per PCI Express 1.1 specification requirements and gives total jitter estimations at BER=10⁻⁶ and BER=10⁻¹², as well as indicate whether the results are within the specified values or not (86ps at BER=10⁻⁶, and 108ps at BER=10⁻¹²).

This page intentionally left blank.

PCI EXPRESS I .OA TOOL OVERVIEW

The PCI Express 1.0a Tool provides both timing and amplitude compliance measurements in any environment, system or IC, electrical or optical. Compliance tests can be completed in seconds with a simple pass/fail indication for each test parameter. It is the most comprehensive and easy to use signal integrity test solution on the market today.


The PCI Express 1.0a Tool accurately determines device performance by quantifying random and deterministic jitter components. In addition, the PCI Express 1.0a Tool can quickly isolate and quantify unwanted deterministic jitter due to crosstalk and EMI with a spectral view of jitter as well as Perform eye diagram analysis for a quick qualitative view of device performance.

MAKING A PCI EXPRESS I.OA MEASUREMENT

SETUP DIRECTIONS

This tool requires the SIA to have the Clock Recovery option installed. A pattern marker is necessary and is possibly derived from the data pattern generator. But, in many cases, this signal is not externally available and it is useful to have the SIA Pattern Marker (PM50) option. The data pattern is a repeating 40-bit pattern as specified: {0011111010 101010101 1100000101 0101010101}.

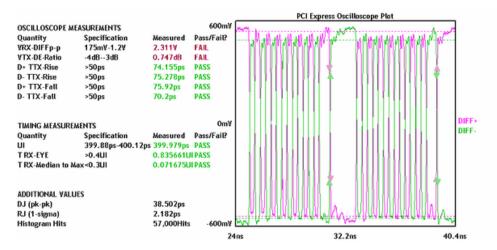
• Connect the SIA as shown below. The Data pattern is input to the Clock Recovery input. The Clock Recovery Data output is looped back to IN1 with the PM50 option.

• From the Main Menu, press "Data Standards" and PCI Express to open the tool.

Data Standards PCI Exp	press
------------------------	-------

• Choose the "Compliance Point."

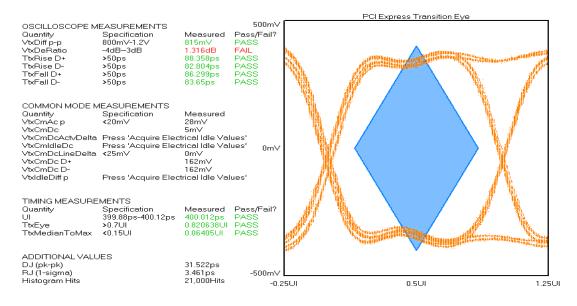
To perform the measurement:


• Press "Single/Acquire." Several views are available once the measurement is complete. All views are displayed with the results summarized to the left of the plot. The specification value, the measured value and Pass or Fail is displayed. Additional values are displayed below. These values are not directly required for the Specification, but are useful for diagnostic purposes in the event that a test fails or only passes by a small margin. The Summary view shows the specification revision that the tool will measure. Many specifications continue to evolve and may change.

INTERPRETING VIEWS (PLOTS)

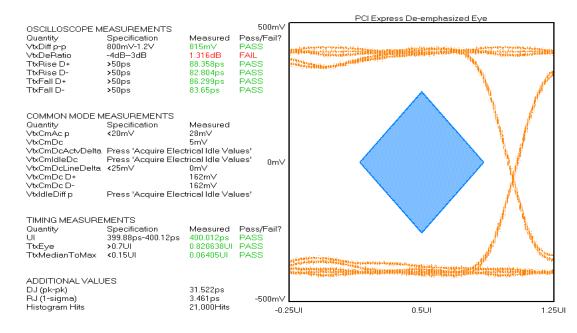
Oscilloscope - Shows the voltage vs. time for a portion of the pattern. Trans Eye - Shows a collection of Transition bits across a record of 250UI. De-emph Eye – Shows a collections of de-emphasized bits across a record of 250UI. Total Histogram - Shows the Clock to Data measurements. Bathtub - Shows the predicted Total jitter at a specific Bit Error Rate. Summary - Shows a textual summary of the specifications measured along with Pass/Fail indicators.

OSCILLOSCOPE VIEW

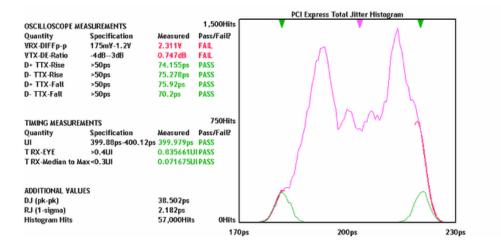

This view shows the voltage vs. time for a portion of the pattern. Measurements are summarized on the left.

TRANSITION EYE VIEW

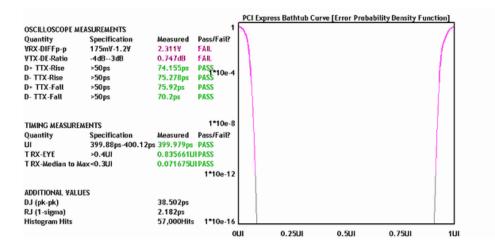
The Transition Eye is a collection of Transition bits across a record of 250UI. The reference point for these bits is from an estimation of the bit time across 3500UI.


A transition bit is a bit that occurs after an edge. For any string of consecutive bits, (ones or zeros) the first bit is a transition bit and all others are De-Emphasized bits.

DE-EMPHASIZED EYE VIEW


The De-Emphasized Eye is a collection of De-Emphasized bits across a record of 250UI. The reference point for these bits is from an estimation of the bit time across 3500UI.

For any string of consecutive bits (ones or zeros), the first bit is a transition bit and all others are De-Emphasized bits. Any string of bits after the transition bit are de-emphasized bits.

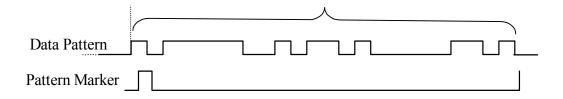

TOTAL HISTOGRAM VIEW

The Total Jitter Histogram view shows the Clock to Data measurements. An arrow at the center top of the plot indicates the mean of the Total Jitter Histogram. Two other histograms to the left and right are the histograms of edge measurements from the earliest and latest measured mean edge times. The means for each of those are indicated by different colored arrows at the top left and right.

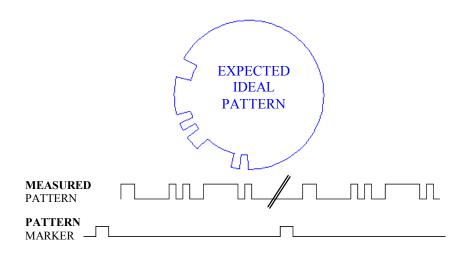
BATHTUB VIEW

The Bathtub curve shows the predicted Total jitter at a specific Bit Error Rate. Bit Error Rate is displayed on the vertical axis and one UI is displayed on the horizontal. As jitter increases, the two lines will move closer to each other.

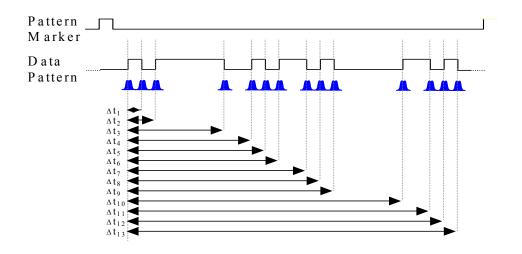
SUMMARY VIEW


Shows a textual summary of the specifications measured along with Pass/Fail indicators. Many specifications continue to evolve and may change.

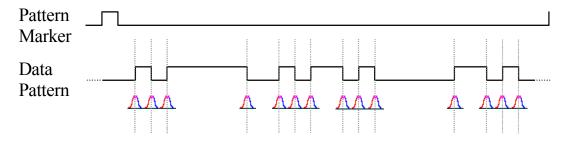
PCI Express Summary OSCILLOSCOPE MEASUREMENTS Pass/Fail? Quantity Specification Measured VTX-DIFFp-p 175mV-1.2V TIMING MEASUREMENTS Pass/Fail? Quantity Specification Measured 399.88ps-400.12ps UL T TX-EYE Incomplete: Press 'Run' & wait for value T TX-Median to Max Incomplete: Press 'Run' & wait for value ADDITIONAL VALUES DJ (pk-pk) RJ (1-sigma) Histogram Hits Incomplete: Press 'Run' & wait for value Incomplete: Press 'Run' & wait for value *PCI Express Specification Version 1.0a


PCI EXPRESS THEORY OF OPERATION

This section will give a basic overview of the methodology behind the KPWM measurement. In addition to the data signal to be analyzed, this tool requires a pattern marker to be connected to the Arm Channel. The Marker signal has an edge relative to the same bit of the pattern each time the marker occurs. Since no bit-clock is used, analysis of jitter is independent of clock-jitter effects, and because the Arm is not a trigger, any jitter on the marker will not transfer to the measurement of the Data.


The following steps are performed automatically when a measurement is acquired using this tool. The first step is to accurately measure the Unit Interval (UI). This is done by making a series of pattern length measurements, calculating the mean and dividing that time by the length of the pattern in UI. This results in the Average or ideal UI and an accurate bit rate. Subsequent measurements and analysis will compare to this ideal UI and the jitter is displayed as the deviation from this ideal bit time.

After the UI measurement, a pattern match of the data must be done to identify the measured data stream relative to the expected bit sequence as well as the phase relationship to the pattern marker. This eliminates the need to have the pattern marker at the beginning of the expected pattern. The expected pattern is rotated against the measured pattern until it matches.



Next, the total DCD+ISI is calculated. Histograms are made of every edge in the pattern. The mean values of these histograms are compared to the ideal edge locations. The measured mean location is subtracted from the calculated ideal edge location. The worst-case positive edge location is added to the worst-case negative edge location giving the total DCD+ISI. This can also be thought of as comparing the earliest edge to the latest edge.

Lastly, data is gathered to show PJ and RJ frequency components. PJ and RJ components are determined by taking the variance of timing measurements from the histogram at each UI. The variance is the square of the standard deviation of the histogram at each UI. If any "holes" in the variance record exists, they will be interpolated by either a cubic or linear fit. The plot of the variance versus UI (1-Sigma view) is the autocorrelation of the periodic and random jitter. Refer to the "High Frequency Modulation" Getting Started Guide for further information about this concept.

An FFT of the autocorrelation function is used to determine the periodic components. The Fast Fourier transform of the autocorrelation function is commonly referred to as the power spectral density or power spectrum. The largest magnitude periodic component represents the PJ contribution to TJ. The RJ component is determined by subtracting the spectral components, summing the background then taking the square root to provide a 1-sigma value.

Optionally, TailFit allows the accurate determination of random jitter when there is a significant amount of periodic jitter. Refer to Histogram Getting Started Guide for more about TailFit and RJ.

This page intentionally left blank.

FIBRE CHANNEL COMPLIANCE TOOL

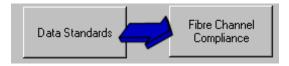
With fewer controls to configure, this tool provides single-button compliance measurements of specifications summarizing relevant measurement plots.

APPLICATIONS OF FIBRE CHANNEL COMPLIANCE TOOL

- FC HBA,
- JBOD,
- GBIC,
- Gigabit Ethernet,
- SONET and
- InfiniBand

Testing SAN systems for jitter compliance can be difficult because traditional techniques and instruments, such as oscilloscopes, do not provide jitter values at a specified bit error rate (BER) or separate out the various jitter components. Furthermore, oscilloscopes require a bit clock or trigger and, typically, these signals are not available on these systems. With *WAVECREST's* SIA, PM50 and dataCOM software, users can perform jitter compliance measurements on only the data without a bit clock or trigger. The PM50 produces a pattern marker from a repeating pattern that is then used as an arming signal for the SIA. In essence, the pattern marker provides a reference point for time interval measurements. The PM50 matches up to a unique, 40-bit portion of the data. For example, the unique 40-bit portion of a pattern, such as CRPAT, would be the start-of-frame (SOF). An arm signal will be generated after the SOF and a time interval measurement will be made from the next data edge, after the arm signal, to an edge *n* unit intervals away. Algorithms de-convolve the data to provide quantitative information on random, deterministic and periodic jitter and this is described in detail at the end of this application note. The PM50 can also be used in the Edge Count mode where the user inputs the number of positive edges of the pattern and a pattern marker is output every time the pattern repeats. With the A45/A25 oscilloscope option, the SIA can also make voltage measurements such as eye masks and rise/fall times.

MAKING A FIBRE CHANNEL MEASUREMENT


SETUP DIRECTIONS

The tool requires a known repeating pattern such as CRPAT, CJTPAT, K28.5, etc.

• If the SIA has the PM50 Pattern Marker option installed, connect the data directly to Channel 1 (IN1).

- Note: If the Pattern Marker Option is not installed, you must have a pattern marker signal supplied externally. The Marker is a pulse that repeats once per pattern. Pattern Generators typically have a "pattern trigger" or "pattern sync" that will work. With an externally supplied pattern marker, uncheck the pattern marker box.
- From the Main Dialog Bar, press "Data Standards" and "Fibre Channel" to Open the tool.

• Verify the channel settings.

Arm Number

• Press Arm Number and select Channel 1 and check Pattern Marker.

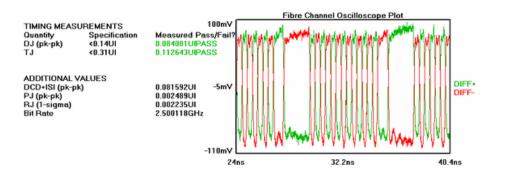
Giga¥iew				
Use Numeric Keypad to toggle channels - ENTER to close				
① 1	O 2	O 3		
O 4	O 5	O 6		
0.7	O 8	O 9		
O 10				
Pattern Marker Enter				

Note: If the Pattern Marker Option is not installed, connect a marker from your pattern generator to channel 2 and select channel 2. With an externally supplied pattern marker, uncheck the pattern marker box.

The Data Channel defaults to channel 1 and does not need to be changed.

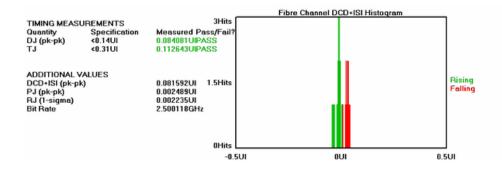
• Press Specifications and configure for the setup you have.

Configuring these settings allows the tool to determine if the measured results pass or fail the specification requirements. Therefore, it is critical that these settings reflect the actual test setup.

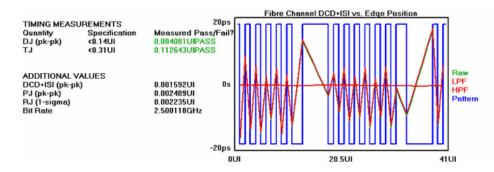

- Finally, press "Load Pattern" and choose the data pattern that is to be measured for this test.
- Press "Single/Acquire". Several views are available once the measurement is complete. All views are displayed with the results summarized to the left of the plot.

INTERPRETING VIEWS (PLOTS)

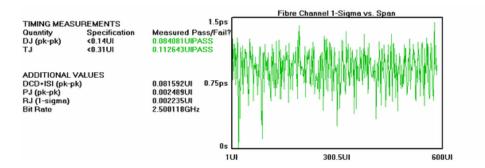
- Oscilloscope Shows the voltage vs. time for a portion of the pattern.
- DCD + ISI Histogram Shows the rising and falling edge histograms relative to the center time of all edges measured.
- DCD + ISI vs Span Shows a representation of the pattern.
- 1-Sigma Shows the 1-sigma values over increasing number of UI, or the accumulation of random jitter.
- FFT Shows the spectral content of the jitter.
- Bathtub Shows the predicted Total Jitter (TJ) at a specific BER—1*10⁻¹².
- Summary Shows a textual summary of the specifications measured along with Pass/Fail indicators.


OSCILLOSCOPE VIEW

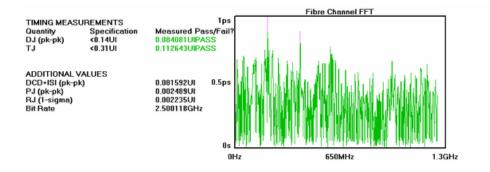
This view shows the voltage vs. time for a portion of the pattern.


DCD + ISI HISTOGRAM VIEW

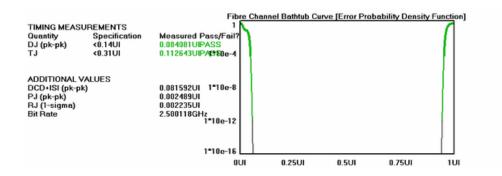
This view shows the rising and falling edge histograms relative to the center time of all edges measured.


DCD + ISI vs. SPAN VIEW

This view shows a representation of the pattern. Each edge is displayed as three lines that are the min, mean and max times measured for that edge. The "raw" line shows long or short UI bits. The LPF and HPF are the receiver filter characteristics.


I-SIGMA VIEW

This view shows the 1-sigma values over increasing number of UI, or the accumulation of random jitter.


FFT VIEW

This view is derived from the 1-Sigma vs. Span view. It shows the spectral content of the jitter. The largest spike on this plot is reported as PJ.

BATHTUB VIEW

Shows the predicted Total Jitter (TJ) at a specific BER $-1*10^{-12}$.

SUMMARY VIEW

Shows a textual summary of the specifications measured along with Pass/Fail indicators.

Fibre Channel Co	mpliance Summary			
TIMING MEASUF Quentity DJ (pk-pk) TJ	EMENTS Specification <0.36UI <0.56UI	Measured 0.081773UI 0.092818UI	Pass/Fail? PASS PASS	Test results section. This displays the measured results against the specification and shows if you passed the specification.
ADDITIONAL VAI DCD+ISI (pk-pk) PJ (pk-pk) RJ (1-sigma) Bit Rate Specification	LUES	0.080969UI 0.000803UI 0.000903UI 1.062499GHz Electrical/Jiter Out	(put/dR	
	ates input signal and test point loca			

FIBRE CHANNEL COMPLIANCE THEORY

The Fibre Channel Compliance Tool utilizes the Known Pattern with Marker tool for the measurements. In addition to the data signal to be analyzed, this tool requires a pattern marker to be connected to the Arm Channel. If your SIA is equipped with the PM-50 option, the marker signal will be generated on the card and no additional input signals are required for making a measurement. The Marker signal has an edge relative to the same bit of the pattern each time the marker occurs. Since no bit-clock is used, analysis of jitter is independent of clock-jitter effects, and because the Arm is not a trigger, any jitter on the marker will not transfer to the measurement of the Data.

For an in depth description on Known Pattern with Marker Measurement Theory, refer to the Known Pattern With Marker quick reference guide.

SERIAL ATA TOOLS

SERIAL ATA II COMPLIANCE HARDWARE CLOCK RECOVERY (CR) TOOL SERIAL ATA II COMPLIANCE SOFTWARE CLOCK RECOVERY (CR) TOOL SERIAL ATA I.O COMPLIANCE TOOL

APPLICATIONS OF SERIAL ATA TOOLS

- SERDES,
- Host Bus Adaptors,
- Switches,
- Hard Drives,
- motherboards,
- Cables,
- Bridges,
- clocks
- PLLs

The SATA standard defines a jitter generation specification profile. This tool automates these measurements and provides pass/fail results.

SERIAL ATA II HARDWARE CLOCK RECOVERY COMPLIANCE TOOL

This tool is for usage models 1x, 2x and utilizes the Wavecrest Multi-rate Clock Recovery option. The SATA II Electrical Specification Rev. 1.0 describes these usage models:

- **Gen1x**: Extended Length 1.5 Gb/s Electrical Specification or "Gen1x": These are newly developed electrical specifications and aimed at 1.5 Gb/s links in "long" backplanes and system-to-system applications. These specifications are based upon Serial Attached SCSI Electrical specifications (CT/CR specifications as called out in SAS).
- **Gen2x**: Extended Length 3.0 Gb/s Electrical Specification: These are newly developed electrical specifications, described here, aimed at 3.0 Gb/s links in "long" backplanes and system-to-system applications. These specifications are based upon Serial Attached SCSI Electrical specifications (CT/CR specifications as called out in SAS).

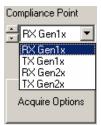
A number of changes in methodology have been implemented in SATA Gen 2 relative to SATA Gen 1. Most significant is the adoption of a clock recovery model. This model requires measurement of jitter: baud/1667 for 2x and 1x usage models.

MAKING A SATA II HARDWARE CR COMPLIANCE MEASUREMENT

SETUP DIRECTIONS

This tool is able to measure SATA Gen 1x and Gen2x usage models. While there are a number of patterns that are defined in the specification, this tool does not require a repeating pattern.

The Data signal is connected to the input of the Multi-Rate Clock Recovery (see figure below). Note that the Inverting input is on the left and the non-inverting input is on the right. SMA jumpers must be connected from the MCR output to the input of channel 1 (IN1).

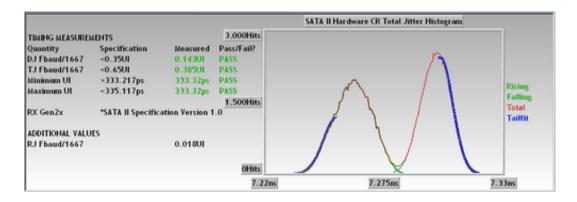

• From the Main Menu, press "Data Standards" and "Serial ATA".

• Choose the "SATA II Hardware CR" tool to measure Gen1x or Gen2x.

• Choose the Compliance point (TX, RX for Gen 2x or Gen 1x usage models).

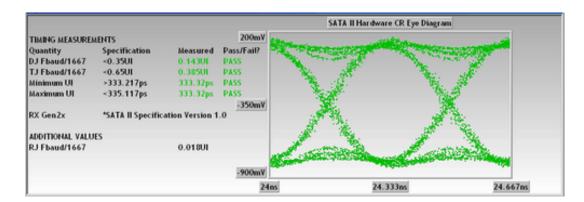
The Tool will automatically set the Multi-rate Clock recovery to the appropriate data rate. You should ensure that the voltage correction is checked in the Clock Recovery configuration menu. This selection compensates for the jumpers and should be checked when the SMA jumpers are present.

GigaView	×
CR1 Type:	CR2 Type:
Multiple Rate	Not Installed
Bit Rate (Gb/s):	
PCIe (2.5 GHz)	
Voltage Correction	
Corner Frequency (kHz)	
Default	
1499.700060	
Application	
8B / 10B PRBS	
	I
	OK]


• Press "Run" Deform the measurement. Several views are available once the measurement is complete. All views are displayed with the results summarized to the left of the plot.

INTERPRETING VIEWS (PLOTS)

- Histograms Shows a histogram of rising and falling data edge times relative to the recovered clock.
- Eye Diagram Shows an eye diagram.
- Bathtub Curve Shows eye opening at a specific Bit Error Rate.
- Summary Shows the results with "Pass" "Fail" status for each jitter level.


HISTOGRAM VIEW

This view shows a histogram of rising and falling data edge times relative to the recovered clock. It allows you to see if there is a difference in the distributions of rising and falling edges. For example, the rising edges could have a bimodal distribution while falling could be single mode.

EYE DIAGRAM VIEW

This view shows an eye diagram. Timing measurements are summarized to the left.

BATHTUB CURVE VIEW

The bathtub curve shows eye opening at a specific Bit Error Rate. This tool shows all RJ, DJ, and TJ values at $1*10^{-12}$ BER. Initially the default is to show the bathtub curves for all three different filter corner frequencies. Different applied filters will possibly result in different bathtub curves because of the presence or absence of Periodic jitter at certain frequencies.

			SATA II Ha	dware CR Bathtu	b Curve [Error P	robability Density	Function]
TIMING MEASURES	4ENTS		333.32ps				1
Quantity	Specification	Measured	Pass/Fail?				
DJ Fbaud/1667	<0.35UI	0.143UI	PASS				
TJ Fbaud/1667	<0.65UI	0.385UI	PASS p.3.3332us				
Minimum UI	>333.217ps	333.32ps	PASS	1		1	
Maximum UI	<335.117ps	333.32ps	PASS	1			
			33.332ms	1		1	
RX Gen2x	*SATA II Specific	ation Version 1	.0	1			
ADDITIONAL VALU	ES		5.5553min.	1			
RJ Fbaud/1667		0.018UI		1		1	
			38.579days			1	
			001	0.2501	0.5UI	0.7501	101

SUMMARY VIEW

This view shows a text summary of the results.

DJ Fbaud/1667 <0.35UI 0.143UI PASS TJ Fbaud/1667 <0.65UI 0.385UI PASS Minimum UI >333.217ps 333.32ps PASS Maximum UI <335.117ps 333.32ps PASS	
TJ Fbaud/1667 <0.65UI 0.385UI PASS Minimum UI >333.217ps 333.32ps PASS Maximum UI <335.117ps 333.32ps PASS	
Minimum UI >333.217ps 333.32ps PASS Maximum UI <335.117ps 333.32ps PASS	c.
Maximum UI <335.117ps 333.32ps PASS	
	is s
RX Gen2x *SATA II Specification Version 1.0	s
ADDITIONAL VALUES	
RJ Fbaud/1667 0.018UI	

SERIAL ATA II SOFTWARE CLOCK RECOVERY COMPLIANCE TOOL

This tool is for usage models 1x, 2i and 2m and utilizes a software recovered clock model. The SATA II Electrical Specification Rev. 1.0 describes these usage models:

- **Gen1x**: Extended Length 1.5 Gb/s Electrical Specification or "Gen1x": These are newly developed electrical specifications, described here, aimed at 1.5 Gb/s links in "long" backplanes and system-to-system applications. These specifications are based upon Serial Attached SCSI Electrical specifications (CT/CR specifications as called out in SAS).
- **Gen2i**: Generation 2 Electrical Specifications: These are newly developed 3.0 Gb/s electrical specifications, described here, aimed at PC motherboard to device applications.
- **Gen2m**: Generation 2 Electrical Specifications for "Short" Backplane and External Desktop Applications: These are newly defined 3.0 Gb/s electrical specifications aimed only at these applications. These include only modified Transmitter and Receiver Differential Swing specifications. All other electrical specifications relating to Gen2m compliance points are identical to Gen2i specifications. This specification is for this limited application only and is not intended for any other system topology.

A number of changes in methodology have been implemented in SATA Gen 2 relative to SATA Gen 1. Most significant is the adoption of a clock recovery model. This model requires measurement of jitter at different corner frequencies: baud/10, and baud/500 for 2m and 2i and baud/1667 for 2x usage models.

MAKING A SATA II SOFTWARE CR COMPLIANCE MEASUREMENT

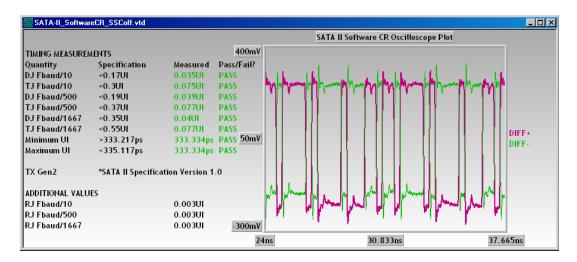
SETUP DIRECTIONS

This tool is able to measure SATA Gen 2 compliance on any repeating data stream.

• From the Main Menu, press "Data Standards" and "Serial ATA".

• Choose the "SATA II Software CR" tool to measure Gen 2i and Gen 2m.

The Data Channel defaults to Channel 1 and does not need to be changed if your data is connected to IN1.

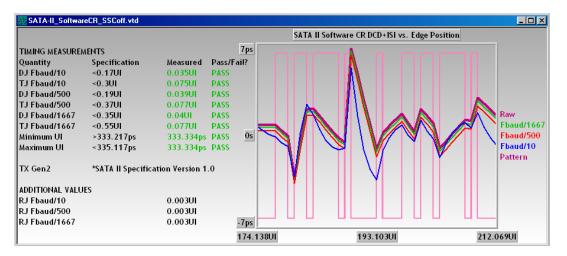

• To perform the measurement, press "Single/Stop" D. Several views are available once the measurement is complete. All views are displayed with the results summarized to the left of the plot. The specification value, the measured value and Pass or Fail is displayed.

INTERPRETING VIEWS (PLOTS)

- Oscilloscope Shows the waveform from the input and the inverting input.
- DCD + ISI Histogram Shows a histogram of rising and falling edge times across one pattern repeat.
- DCD + ISI vs. Span Shows how the DCD+ISI changes across a repeat of the pattern.
- 1-Sigma Shows the accumulation of jitter across a number of UI.
- FFT Shows the jitter spectrum for Periodic and Random Jitter.
- Bathtub Curve Shows eye opening at a specific Bit Error Rate.
- Summary Shows a text summary of the results.

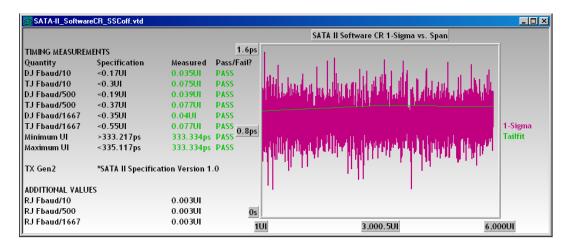
OSCILLOSCOPE VIEW

View shows the waveform from the input and the inverting input. Timing measurements are summarized to the left.

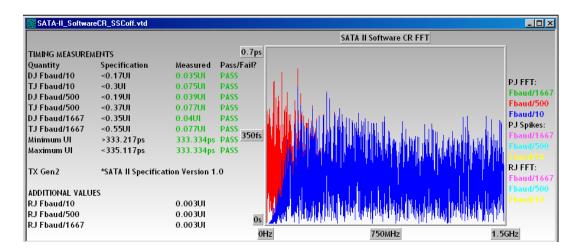

DCD + ISI HISTOGRAM VIEW

This view shows a histogram of rising and falling edge times across one pattern repeat. It can give an indication of DCD+ISI. Or it allows you to see if there is a difference in the distributions of rising and falling edges. For example, the rising edges could have a bimodal distribution while falling could be single mode.

SATA-II_Softwa	reCR_SSCoff.vtd				
				SATA II Software CR DCD+ISI Histogra	n
TIMING MEASURE	MENTS		10Hits		
Quantity	Specification	Measured	Pass/Fail?		
DJ Fbaud/10	<0.17UI	0.035UI	PASS		
TJ Fbaud/10	<0.3UI	0.075UI	PASS		
DJ Fbaud/500	<0.19UI	0.039UI	PASS		
TJ Fbaud/500	<0.37UI	0.077UI	PASS		
DJ Fbaud/1667	<0.35UI	0.04UI	PASS		
TJ Fbaud/1667	<0.55UI	0.077UI	PASS		Rising
Minimum UI	>333.217ps	333.334ps	PASS 5Hits	_	Falling
Maximum UI	<335.117ps	333.334ps		I	ranng
TX Gen2	*SATA II Specific	ation Version 1	.0		
ADDITIONAL VALU	IES				
RJ Fbaud/10		0.003UI			
RJ Fbaud/500		0.003UI			
RJ Fbaud/1667		0.003UI	OHits		
			-0.17UI	-001	0.17UI


DCD + ISI vs. SPAN VIEW

This view shows how the DCD+ISI changes across a repeat of the pattern. Different filters are applied to this record and it is possible to view all or just one using the setting "Filters to Show". The legend to the right shows the filtered result that is displayed on the plot. The pattern represented by the "Raw" can be turned off also using the "Show Ptn on Plot" setting.


I-SIGMA VIEW

The 1-sigma view shows the accumulation of jitter across a number of UI. When cross talk or Periodic Jitter is present, this plot looks like the example with 'hills and valleys'. This record is used to generate an FFT of the Periodic and Random Jitter spectrum. A constantly rising plot line typically indicates that the random jitter is constantly increasing or that there is a very low frequency periodic jitter present.

FFT VIEW

The FFT shows the jitter spectrum for Periodic and Random Jitter. The different filters are applied to this FFT for required corner frequencies at baud/10, baud/500 and baud/1667. It is possible to view all or just one using the setting "Filters to Show". The legend to the right shows the filtered result that is displayed on the plot.

BATHTUB CURVE VIEW

The bathtub curve shows eye opening at a specific Bit Error Rate. This tool shows all RJ, DJ and TJ values at $1*10^{-12}$ BER. Initially the default is to show the bathtub curves for all three different filter corner frequencies. Different applied filters will possibly result in different bathtub curves because of the presence or absence of Periodic jitter at certain frequencies.

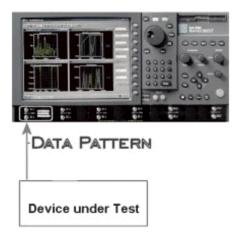
💁 SATA-II_Softwa	reCR_SSCoff.vtd						_ 🗆 ×
			SATA II So	ftware CR Bathtub	Curve [Error P	robability Density	Function]
TIMING MEASURE	MENTS		1				
Quantity	Specification	Measured	Pass/Fail?				
DJ Fbaud/10	<0.17UI	0.035UI	PASS				
TJ Fbaud/10	<0.3UI	0.075UI	PASS DASE*10e-4				
DJ Fbaud/500	<0.19UI	0.039UI	PASS				
TJ Fbaud/500	<0.37UI	0.077UI	PASS				
DJ Fbaud/1667	<0.35UI	0.04UI	PASS				
TJ Fbaud/1667	<0.55UI	0.077UI	PASS				Fbaud/1667
Minimum UI	>333.217ps	333.334ps	PASS*10e-8				Fbaud/500
Maximum UI	<335.117ps	333.334ps	PASS				Fbaud/10
TX Gen2	*SATA II Specific	ation Version 1	.0				
			1*10e-12				
ADDITIONAL VALU	ES						
RJ Fbaud/10		0.003UI					
RJ Fbaud/500		0.003UI	4440 44				
RJ Fbaud/1667		0.003UI	1*10e-16				
			001	0.25UI	0.5UI	0.75UI	1UI

SUMMARY VIEW

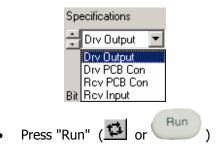
Shows a text summary of the results.

🚉 SATA-II_Softwar	reCR_SSCoff.vtd			
SATA II Software C	R Summary			
TIMING MEASUREN	AENTS			
Quantity	Specification	Measured	Pass/Fail?	
DJ Fbaud/10	<0.17UI	0.035UI	PASS	
TJ Fbaud/10	<0.3UI	0.075UI	PASS	
DJ Fbaud/500	<0.19UI	0.039UI	PASS	
TJ Fbaud/500	<0.37UI	0.077UI	PASS	
DJ Fbaud/1667	<0.35UI	0.04UI	PASS	
TJ Fbaud/1667	<0.55UI	0.077UI	PASS	
Minimum UI	>333.217ps	333.334ps	PASS	
Maximum UI	<335.117ps	333.334ps	PASS	
TX Gen2	*SATA II Specific	ation Version 1.0		
ADDITIONAL VALU	ES			
RJ Fbaud/10		0.003UI		
RJ Fbaud/500		0.003UI		
RJ Fbaud/1667		0.003UI		
1				F

This page intentionally left blank.


SERIAL ATA I.O COMPLIANCE TOOL

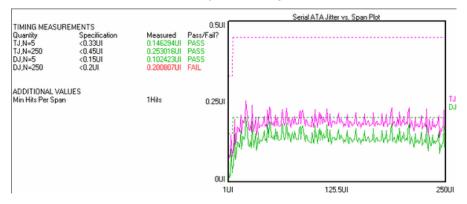
The SATA standard defines a jitter generation specification profile. This tool automates these measurements and provides pass/fail results.


MAKING A SERIAL ATA I.O COMPLIANCE MEASUREMENT

SETUP DIRECTIONS

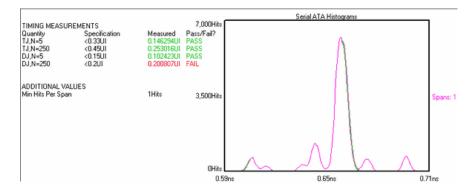
• Verify setup

• Choose the correct "Specifications" on the Dialog Bar to the right:



INTERPRETING VIEWS (PLOTS)

- Jitter vs. Span Shows the specification jitter levels and the actual measured values for each UI span from 0 to 250.
- Histograms Shows a selection of jitter histograms that make up the data for the 0 to 250 UI spans of the "Jitter vs. Span" plot.
- Summary Shows the results with "Pass" "Fail" status for each jitter level.


JITTER VS. SPAN VIEW

This view shows the specification jitter levels (Version 1.0 of the SATA spec.) as the dotted line for both TJ and DJ. Then, it shows the actual measured values for each UI span from 0 to 250. This gives a visual indication of when and where a specification jitter level has been violated.

HISTOGRAMS VIEW

This shows a selection of jitter histograms that make up the data for the 0 to 250 UI spans of the "Jitter vs. Span" plot. When this View is selected, the "Current Hist. Span" selection box can be used to view different Histograms that correspond to different UI spans.

SUMMARY VIEW

This shows the results with "Pass" "Fail" status for each jitter level. The table shows the "Quantity" or jitter spec point, the "Specification" or the specified level that is required by the SATA spec., the "Measured" value that was made and the "Pass/Fail?" which show whether or not the spec was met.

mary		
JREMENTS Specification <0.33UI <0.45UI <0.15UI <0.2UI	Measured 0.146294UI 0.253016UI 0.102423UI 0.200807UI	Pass/Fail? PASS PASS PASS FAIL
an	1Hits	
	<0.33UI <0.45UI <0.15UI	JREMENTS Specification Measured <0.33U 0.146294UI <0.45UI 0.253016UI <0.15UI 0.102423UI <0.2UI 0.200807UI /ALUES an 1Hits

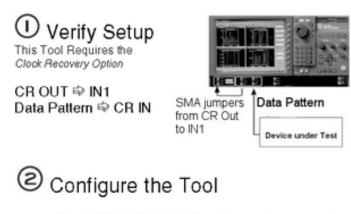
SERIAL ATA THEORY

The SATA Specification requires that jitter measurements be made from Data edge to Data edge across varying spans. The spans are from 0 to 5 UI, and then from 6 to 250 UI. This tool automates these measurements and provides pass/fail results. For the specification point A2, or 25,000 UI, a 1010 pattern is used and the Low Frequency Modulation tool can be used.

This tool requires no knowledge of the data stream prior to making a measurement. It simply measures data edge to data edge and places the measurements in their relative bins. The bin size is base on the "Bit Rate (Gb/s)" entered into the tool plus or minus 0.5 UI. For example, if a span of 1.12UI is measured, it is placed in the 1UI bin. Some random time later, another measurement is made and is 2.34 UI, so it is placed in the 2UI bin. After each bin has sufficient data, a TailFit is performed on each UI span to get RJ, DJ and TJ at 10-12 BER.

This page intentionally left blank.

INFINIBAND TOOL OVERVIEW


TYPICAL APPLICATIONS OF THE INFINIBAND TOOL

- SERDES,
- Host Channel Adaptors,
- Target Channel Adaptors,
- Switches,

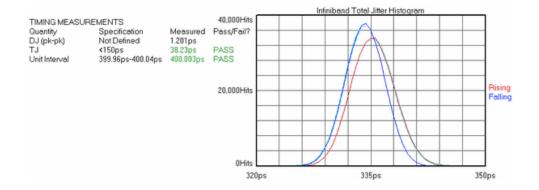

This tool automates these measurements and provides pass/fail results.

MAKING AN INFINIBAND MEASUREMENT

SETUP DIRECTIONS

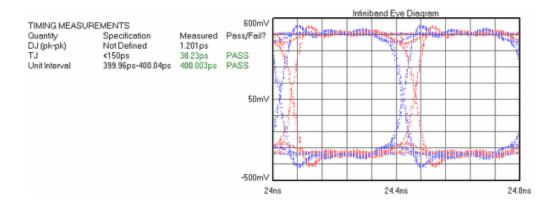
Press "Specifications" and choose the appropriate: *Optical or Electrical *1x, 4x, 12x *TP1, TP2, etc...

Press "Run"

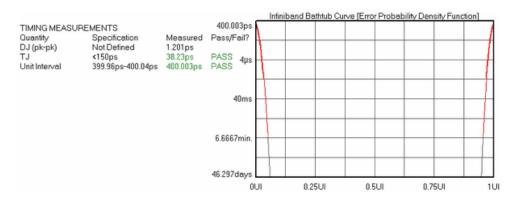

Measurements are complete when Single/Stop light turns off. Several views are available once the measurement is complete. All views are displayed with the results summarized to the left of the plot. The specification value, the measured value and Pass or Fail is displayed. The Summary view shows the revision of the specification that the tool will measure. Many specifications continue to evolve and may change. Check to see that this is the current specification release.

INTERPRETING VIEWS (PLOTS)

- Histogram The Total Jitter Histogram view shows the Clock to Data measurements.
- Eye Diagram This view shows the voltage vs time as an eye diagram using the recovered clock as a trigger.
- Bathtub The Bathtub curve shows the predicted Total jitter at a specific Bit Error Rate. Bit Error Rate is displayed on the vertical axis and one UI is displayed on the horizontal. As jitter increases, the two lines will move closer to each other.
- Summary Shows a textual summary of the specifications measured along with Pass/Fail indicators.


HISTOGRAM VIEW

Displays the Total Jitter Histogram view of the Clock to Data measurements.


EYE DIAGRAM VIEW

This view shows the voltage vs. time as an eye diagram using the recovered clock as a trigger.

BATHTUB VIEW

The Bathtub curve shows the predicted Total jitter at a specific Bit Error Rate. Bit Error Rate is displayed on the vertical axis and one UI is displayed on the horizontal. As jitter increases, the two lines will move closer to each other.

SUMMARY VIEW

Shows a textual summary of the specifications measured along with Pass/Fail indicators.

Infiniband Summary

TIMING MEASU	JREMENTS			
Quantity	Specification	Measured	Pass/Fail?	
DJ (pk-pk)	Not Defined	1.201ps		
ТJ	< 150ps	38.23ps	PASS	
Unit Interval	399.96ps-400.0	4ps	400.003ps	PASS
Specification	Electrical/1X/T	P5		

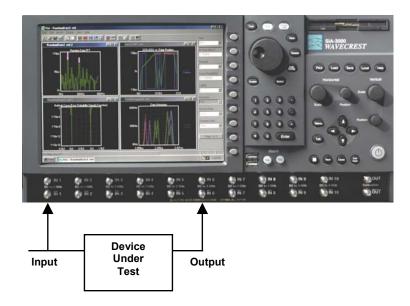
*Infiniband Specification Release 1.1

This page intentionally left blank.

CHANNEL-TO-CHANNEL TOOLS

PROPAGATION DELAY AND SKEW DATA BUS LOCKTIME STRIP CHART - SEE CLOCK STRIP CHART TOOL

PROPAGATION DELAY & SKEW TOOL


Making A Propagation Delay & Skew Measurement

SETUP DIRECTIONS

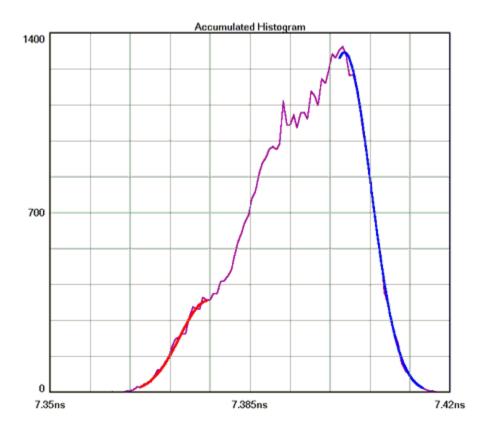
This tool requires signals connected to each measurement channel.

- Verify the proper input signal levels.
- Connect a signal to any input channel.
- Connect a signal to any open input channel.

Times will be measured from chosen edges on the first channel to chosen edges on the second channel.

INTERPRETING PROP DELAY & SKEW VIEWS

- Accumulated Histogram
- Bathtub Histogram
- Maxi Histogram
- Summary View

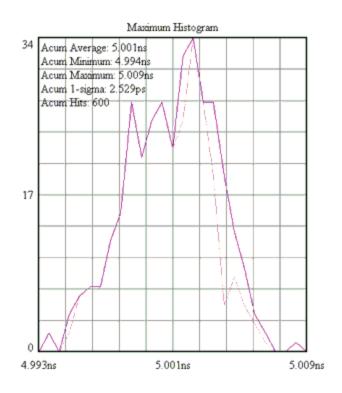

ACUM HISTOGRAM

This view shows the results of running acquires or multiple single acquires of time measurements displayed as a histogram. The statistics and plot relate to all measurements taken since the last clear. This example shows TailFit enabled.

Horizontal x-axis shows Time.

Vertical y-axis shows the number of measurements (Hits per Edge).

Cursor coordinates are displayed on the bottom status line.

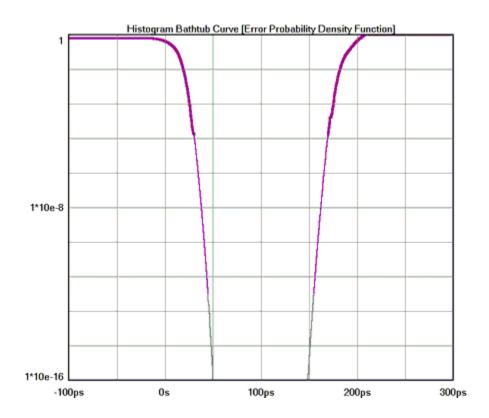

MAXI HISTOGRAM

This view shows the Maximum number of hits per edge displayed as a histogram. Multiple acquires will only change the plot if the hits per edge for a given time exceeded the values from a previous acquire. It can be thought of as a maximum envelope of time measurements.

Horizontal x-axis shows Time.

Vertical y-axis shows the number of measurements (Hits per edge).

Cursor coordinates are displayed on the bottom status line.

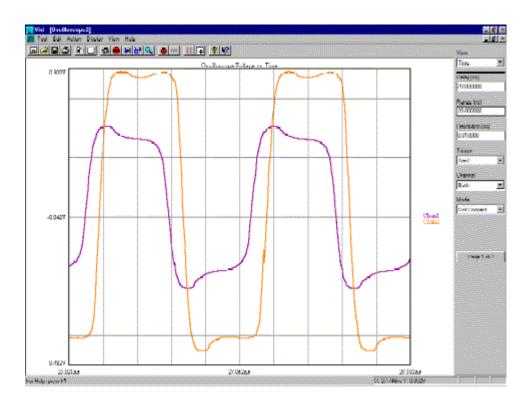

BATHTUB HISTOGRAM

This plot is derived from the TailFit. Using RJ and DJ information it shows a TJ value at a specified <u>Bit</u> Error Rate (BER default is $1*10^{-12}$). The thick part of the line indicates measured values; the thin part indicates calculated values. The color stops at the BER where TJ is determined. The plot gives the user information about failure (when the lines cross) and margin, if the part fails below the specified BER.

Horizontal x-axis shows Time (of one unit interval) or Unit Interval.

Vertical y-axis shows the BER.

Cursor coordinates are displayed on the bottom status line.



SUMMARY VIEW

The data represent values from histograms of measurements. Normal Histogram shows statistics from a single histogram. Accumulated Histogram shows statistics from all histograms since a clear. The user is able to annotate this page.

N	TPD +/+	Minimum			Pk-Pk	Hits
Normal Histogram Accumulated Histor	7.394ns	7.366ns 7.36ns	7.412ns 7.418ns	9.011ps 9.671ps	46.387ps 58.594ps	300 51300
Accumulated Histor	grant .594ns	7.3005	7.41005	9.07 ips	50.594µs	51500
	V1:	0.164V	V2:	0.17V		
Lt-rmsJ	Rt-rmsJ	A	wg-rmsJ	ſ) Jpk-pk	
4.958ps	4.682ps	4	.82ps	2	4.688ps	
Goodness-of-fits	-	#	Passes	1	ſJ	
1.044	0.615	1	71	8	9.674ps	

PROPAGATION DELAY & SKEW THEORY

The instrument asynchronously measures times between threshold crossings.

These hits are made randomly. This randomization ensures that no jitter would be masked out by a constant sampling rate. Each hit, or time sample, is then binned into a histogram. The histogram is complete once the number of Hits per edge has been reached. Additionally, the instrument is not triggered. Triggered instruments can mask out jitter if the signal used to trigger is derived from the circuit under test.

The Histogram is the most basic information that the instrument and *GigaView* software will give. For the Skew tool, histograms of four different edge relationships can be made:

 $\begin{array}{c|c} \underline{CH1} & \underline{CH2} \\ \hline \text{Rise} \rightarrow & \text{Rise} \\ \hline \text{Rise} \rightarrow & \text{Fall} \\ \hline \text{Fall} \rightarrow & \text{Rise} \\ \hline \end{array}$

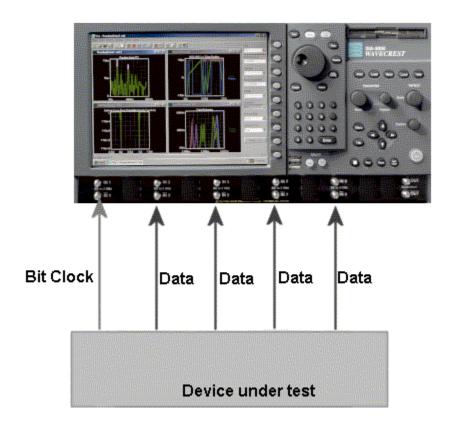
The "hits per edge" determines how many time measurements will be in each histogram. Time values are binned and displayed on the x-axis (horizontal) while the y-axis (vertical) represents the number of hits that occurred in that bin. Basic statistical information can then be derived from the histogram: mean value, peak-to-peak, 1-sigma (1 standard deviation), maximum and minimum values.

See Histogram Theory

The user can also see immediately if the distribution is multi-modal there is a jitter source present. Because the time samples are randomly made, the histogram represents a probability density function. So if the histogram of periods were bimodal with each mode having roughly equal samples, we can infer that the probability of a short and long period are equal. This would mean that short and long periods are alternating. For more information, see the in-depth description.

DATA BUS TOOL

OVERVIEW

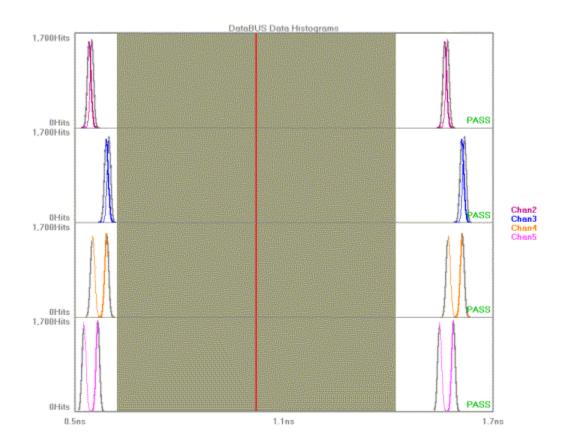

With the SIA[™] Signal Integrity Analyzer and *GigaView* Databus software, single-ended and differential clock and data signals can be characterized for timing, clock and data jitter, clock-to-data skew, channel-to-channel skew, and Bit Error Rate (BER) on up to ten channels in parallel. The analysis is done using one reference clock and up to nine data channels. Users can input the setup and hold specifications and they are illustrated on the graphical user interface. Setup and Hold violations can be measured based on the actual mean of the data histogram referenced to the clock edge.

For each data lane there are two histograms: one showing the transitions before the clock edge and one showing the transitions after the clock edge. The setup and hold specification is shown as a shaded gray area on the screen. The tool also shows statistical long term BER in the form of a bathtub curve. This view is used to determine long-term system reliability. The gray area is a user selected eye closure specification. If the jitter is too high the bathtub curve will overlap the gray area and the tool will indicate a failure.

MAKING A DATA BUS MEASUREMENT

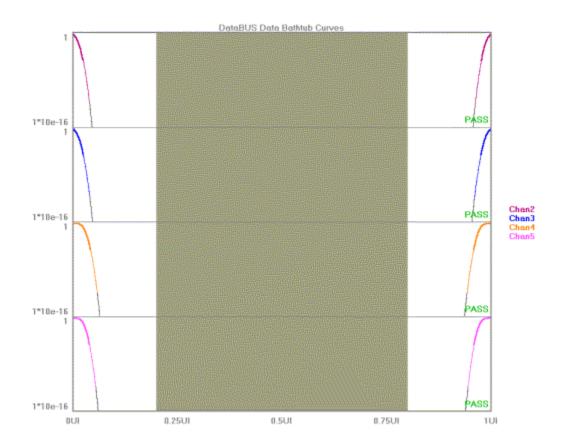
DATA BUS TOOL SETUP DIRECTIONS

- Connect a Bit Clock to the chosen "reference channel". Connect Data channels.
- Choose the Data channels to add and press "add/del channel" Press Pulse find and Run.

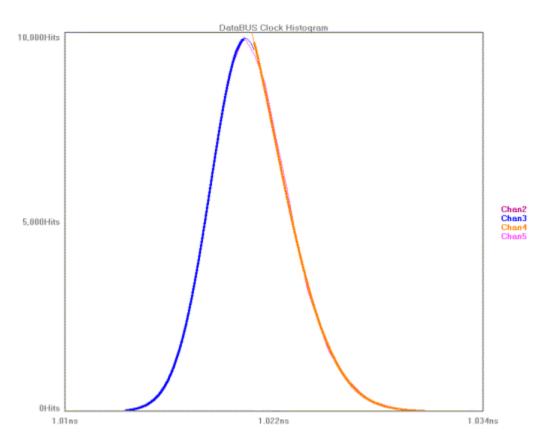


INTERPRETING DATA BUS VIEWS (PLOTS)

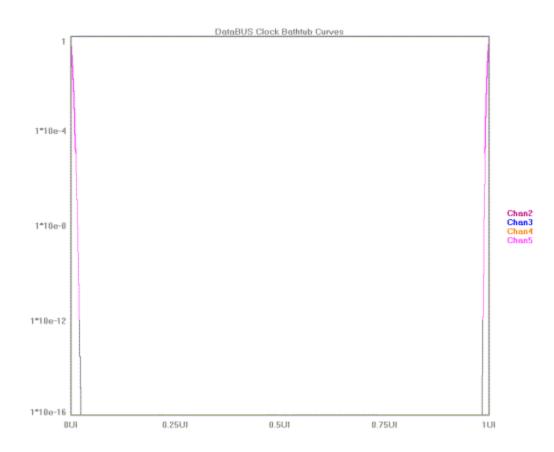
- Data Histogram Shows clock to data histograms. Setup and hold specifications are displayed as gray shaded areas
- Data Bathtubs Displays bathtub curves for each data channel. These curves are used for viewing longterm statistical BER.
- Clock Histogram Displays a histogram of the reference clock signal. Identical to using the Histogram clock analysis tool.
- Clock Bathtub Displays bathtub curve for clock signal.
- Summary Displays a summary of the values measured off of each channel.


DATA HISTOGRAM

Shows clock to data histograms for up to nine data channels. Setup and hold specifications are displayed as gray shaded areas. Skew can be measured for each channel relative to the clock. The x-axis shows time. The vertical center line on the x-axis indicates a clock period time. The y-axis displays number of samples in a histogram. Each channel is displayed in its own row if "Plot Display|stacked" is chosen.


DATA BATHTUB

Displays bathtub curves for each data channel. These curves are used for viewing long term statistical BER. The x-axis shows a 1 Unit Interval (UI) window. The y-axis shows BER.


CLOCK HISTOGRAM

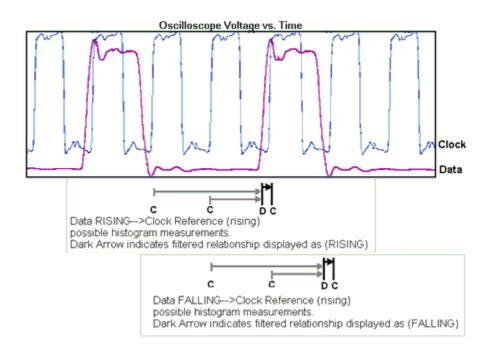
Identical to using the Histogram clock analysis tool, this tool displays a histogram of the reference clock signal. The x-axis shows the measured time of a clock period. The y-axis shows the number of measurements or hits.

CLOCK BATHTUB

Displays bathtub curve for clock signal. The curves show the long term statistical BER. The x-axis shows a 1 Unit Interval (UI) window. The y-axis shows BER.

DATA BUS SUMMARY

Displays a summary of the values measured off of each channel.


-	RefChan1	Chan1to2	Chan1to3	Chan1to4	Chan1to5
DJ(pk.pk)	1.218ps	8.922 ps	8.084 ps	42.58ps	41.249ps
Lt-rmsJ	2.003ps	4.897 ps	5.227 ps	5.327 ps	4.993ps
Rt-rmsJ	3.183 ps	5.069 ps	5.243ps	5.314ps	5.006ps
Ave-rmsJ	2.593 ps	4.983 ps	5.235ps	5.32ps	5ps
TJ	35.411ps	77.537ps	80.489ps	115.875ps	109.768ps
1-Sigma	2.332 ps	6.433ps	6.536ps	21.069ps	20.539ps
Maximum	1.032425ns	0.568585ns	0.619282 ns	8.61156ns	0.588436ns
Minimum	1.011172ns	0.520307 ns	0.568165ns	0.529993ns	0.504358ns
Pk-Pk	21.253ps	48.278ps	51.116ps	81.567ps	84.079ps
Unit Interval	•	1.000291ns	1.00029ns	1.000291ns	1.000292ns
Avg-Skew		0.544615ns	0.593697 ns	0.570714ns	0.545656ns
Chi-Squared Lt		1.315654	1.133981	0.506662	1.165962
Chi-Squared Rt		0.695901	0.689612	0.763898	1.113777
Channel Voltages	-0.003906V	0.25004V	0.25004V	0.25004V	0.25004V
Duty Cycle 52.48	62%				
Hits	90.000	67.871	67.900	68,177	67.658

DATA BUS THEORY OF OPERATION

This tool automates a few different operations related to the Propagation Delay/Skew Histogram.

The Data signal is connected to Channel 1 and Bit Clock Signal is connected to Channel 2, therefore, two histograms can be made. One histogram represents a measurement of Data RISING edges to clock reference edge; the other represents Data FALLING edges to the clock reference edge.

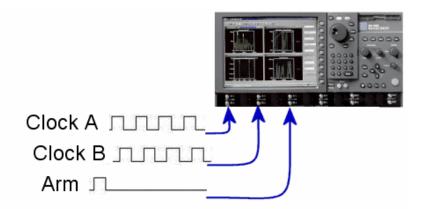
These histograms would show many modes or distributions because there are many possible relationships between clock and data edges. These histograms are filtered to show only those times that relate to the measured Data edges closest in time to the Reference Clock Edge.

CHANNEL-TO-CHANNEL LOCKTIME TOOL

OVERVIEW

APPLICATIONS OF THE CHANNEL-TO-CHANNEL LOCKTIME TOOL

- Measure skew between channels relative to an arm
- Measure Input/Output jitter relative to an arm


This tool is actually an automated histogram process. The tool gathers time measurements to create many histograms. Statistical information from these histograms is then plotted. In this tool, The Skew between channels is the measurement being made. This measurement is then stepped out from an arm signal. A histogram of time measurements is created of the first edge on CH1 to the first edge on CH2 following the arm. The edges being measured are then incremented to create a histogram of the *second* edge on CH1 to the *second* edge on CH2 following the arm. The mean values from these histograms are plotted relative to the corresponding edge increment.

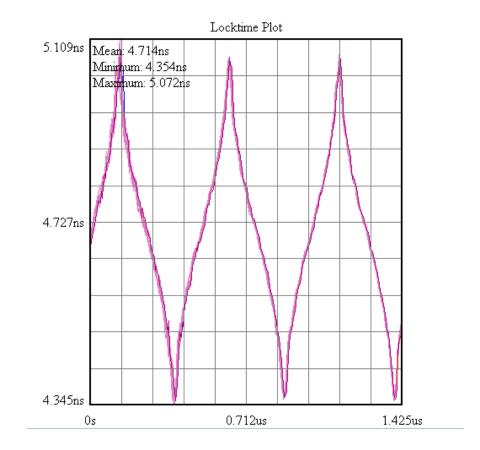
The Arm must be periodic in order for the measurement process to work. A single power up or a single frequency lock will not allow this process to occur. Using a signal from a pulse generator works well as the Arm and lock signal.

CHANNEL-TO-CHANNEL LOCKTIME SETUP DIRECTIONS

This tool requires an Arming signal and two Clock signals.

- Verify the proper input signal levels
- Connect the clock signals to separate channels
- Connect the arm to a third channel

- Press "Acquire Options"
- Choose "Channel" and "Reference Channel" for Clock A and B.
- Press "Back" and "Arming" to go the Arm setup menu.
- Press "Arm Number" and select the channel to be used as the Arm.

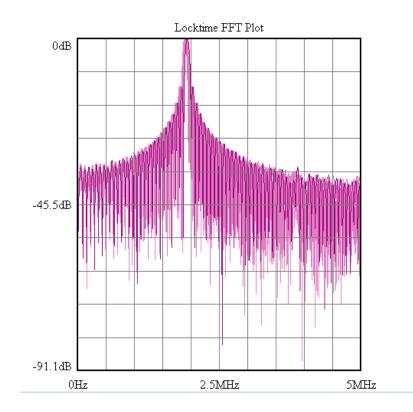

INTERPRETING VIEWS (PLOTS)

- Time View Time (edge) vs. Mean
- FFT View Frequency vs. Power (in dBs or Seconds)
- 1-Sigma View Time (edge) vs. 1-sigma
- Pk-to-Pk View Time (edge) vs. Peak-to-Peak
- Summary View View data in text format and save user notes

TIME VIEW

Each point on the plot represents the *mean* value from a histogram of measurements. The user is able to see how the *mean* of the measured Function changes after an Arm signal.

This plot shows measured periods of a clock with spread spectrum modulation (jitter).

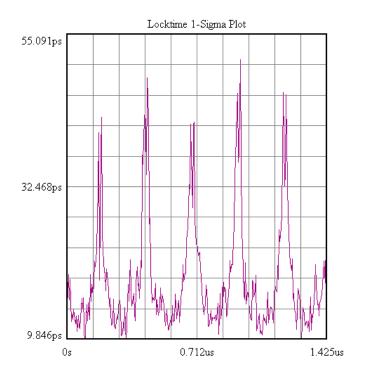


FFT VIEW

The user is able to see the frequency and power of the measured Function.

Vertical axis shows the power in dBs or time from the FFT of the Time View.

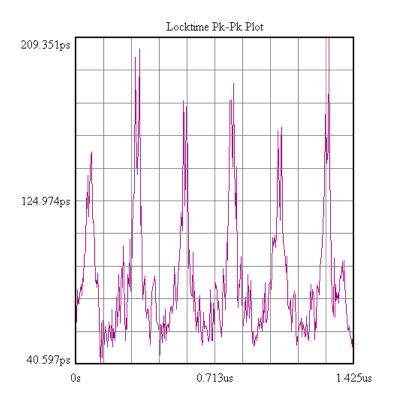
Horizontal axis shows Frequency. The cursor coordinates on the bottom status line show power in dBs or time.



I-SIGMA VIEW

Each point on the plot represents the 1-sigma value from a histogram of measurements. The user is able to see how the 1-sigma of the measured Function changes after an Arm signal.

Vertical axis shows the 1-Sigma value from the Function being measured.


Horizontal axis shows either Time or Edge after the Arm.

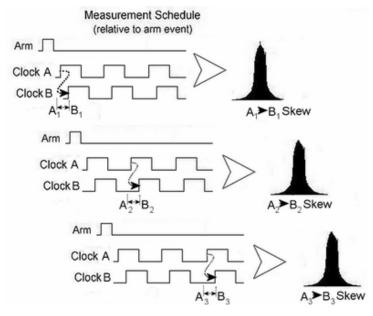
PK-PK VIEW

Each point on the plot represents the 1-sigma value from a histogram of measurements. The user is able to see how the *peak-to-peak* of the measured function changes after an Arm signal.

Vertical axis shows the *peak-to-peak* value from the Function being measured. Horizontal axis shows either Time or Edge after the Arm.

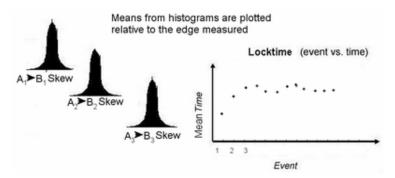
SUMMARY VIEW

The data represent values from a histogram of measurements.


Locktime Summary

	Mean	Minimum	Maximum	Pk-Pk
Period	4.703ns	4.358ns	5.067ns	0.709ns
1-Sigma	19.808ps	5.719ps	56.901ps	51.182ps
Pk-Pk	84.987ps	37.842ps	209.351ps	171.509ps
	(+) Edge	(+) Delta	(-) Edge	(-) Delta
Max Delta	18	52.368ps	392	-55.261ps

CHANNEL-TO-CHANNEL LOCKTIME THEORY


This tool is an automated histogram process. The tool gathers time measurements to create many histograms. Statistical information from these histograms is then plotted.

In this tool, the Skew between channels is the measurement being made. This measurement is then stepped out from an arm signal. A histogram of time measurements is created of the first edge on CH1 to the first edge on CH2 following the arm. The edges being measured are then incremented to create a histogram of the *second* edge on CH1 to the *second* edge on CH2 following the arm. See the 'measurement schedule'.

The arm is a periodic signal. For the histogram of skew from A1 to B1, one sample is made for each arm pulse. This step ends when the number of samples is equal to the setting "Hits per Measure". Then the edges are incremented to measure A2 to B2 and the histogram is made and so on until the edges incremented equals the "Range".

The mean values from these histograms are plotted relative to the corresponding edge increment in the "Time View". Additional views allow the Pk-pk or 1-sigma of these histograms to be plotted relative to the edge increment.

The "Range" setting determines the maximum increment of edges. "Edges to measure" determines how many of these edges will be measured within the "Range". Therefore, if the "Range" equals the "Edges to measure" then all the skews are measured within that range. But if the "Edges to Measure" is less than the "Range" not all edges will be measured. For example "Range" is set to 100. "Edges to measure" is set to 50. Every other skew would be measured so the results would show A1 to B1, A3 to B3, A5 to B5 and so forth to A99 to B99. The range value is met but only 50 distinct skews are measured.

This page intentionally left blank.

HELP TOOLS

_

HELP TOOLS OVERVIEW

Help Topics	Use this button to access the opening screen of Help. From the opening screen, you can jump to step-by-step instructions for using GigaView as well as various types of reference information. Once you open Help, you can click the Contents button whenever you want to return to the opening screen.
Getting Started Wizard	The Getting Started Wizard will provide a series of options or questions to determine an appropriate tool. Based on your responses, a tool will be chosen, configured and a measurement will be made.
Plot Interpreter	This module helps the user interpret plots of actual measurements and to understand how to continue analysis and provide the most comprehensive "picture" of signal integrity. Jitter has many components that can influence each other in many combinations. Therefore, this interpreter only offers general ideas and descriptions of acquired measurements. It will not always describe the exact cause of jitter on measured signals or the exact procedure to continue analysis. The interpreter is intended to serve only as a guide to offer possible directions of troubleshooting,
Online Documentation	This selection provides access to <i>WAVECREST</i> Manuals, Application Notes and Technical Bulletins. When selected, an active index for all <i>WAVECREST</i> Corporation documentation is displayed in Adobe Acrobat Reader (version 3.0 or later). Click on the Document Summary number for a brief overview of the document or click on the Document Number to bring up the document in Adobe Acrobat. Acrobat is available during the installation of <i>GigaView</i> or from Adobe.com.
About GigaView	Click on this command to display the copyright notice and version number of your copy of GigaView software.

This page intentionally left blank.

OTHER TOOLS

OTHER TOOLS OVERVIEW

This feature allows access to other *WAVECREST* products using *GigaView*. For more information on the operation of the DTS-550TM Jitter Generator, DSM Switch Matrix, Arm Generator 100, Optical Interface or Pattern Marker please refer to the appropriate User Manual or Product Description included with your *GigaView* installation CD or the Documentation selection on the Help pull-down menu.

	DTS-550 Controls Requires GPIB connection	Jitter Generator
	DSM-12/16 Controls Requires Serial connection	Switch Matrix
	AG-100 Controls Requires GPIB connection	Arm Generator
	OE-2 Controls Requires GPIB connection See Edit Configuration for OE-2 GPIB setup	Optical Interface
IN 1 PATTERN Weisser Fin 1 ENABLED	PM-50 Pattern Marker Configure Marker, and view Bit Error Counting	Pattern Marker
	Pattern Tool Detect, Edit, & Learn Patterns	Pattern Tool
VV Measure	re/Enhanced Bandwidth: mask violations on g pattern.	Folded Eye Diagram

This page intentionally left blank.

DTS-550 JITTER GENERATOR TOOL

The DTS-550[™] is a versatile clock generator allowing precise control of jitter amplitude, frequency and distribution on digital clock waveforms. This capability allows accurate, repeatable characterization of jitter tolerance in clock recovery circuits for performing worst-case analysis. Jitter amplitudes are programmable over a wide dynamic range at jitter frequencies.

GigaView allows direct control of DTS-550 features through the Utilities window.

The patented Direct Time Synthesis (DTS) technology allows the position of each transition in a data or clock sequence to be directly synthesized in the time domain. This unique edge placement flexibility allows the creation of data sequences or clock waveforms exhibiting precise, digitally programmed variations in edge timing (jitter).

DTS technology allows previously unavailable jitter distributions to be programmed. In addition to standard sine wave variations, the generator also provides Gaussian, sawtooth and triangle distributions. Custom distributions may also be entered.

Please refer to your DTS-550 User's Manual for more information on the operation of the instrument.

DTS-550[™] Setup

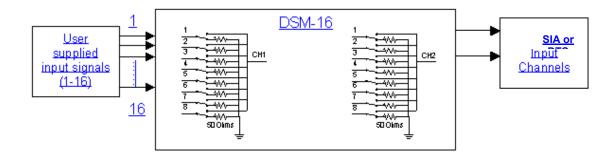
Connect the DTS-550 to the SIA^m using an IEEE 488 cable to the back of both units. Using the SIA *GigaView* software, select Other Tools on the tool menu.

Other Wavecrest Tools: Control Other Wavecrest Products	Other Tools
Control Other wavecrest Products	

Next, select Jitter Generator on the Other Tools menu.

The SIA will begin to communicate with the DTS-550; this may take several seconds for the initialization of the DTS-550.

From the Dialog Bar the user can select Output Settings, Sync Settings and Jitter Settings.

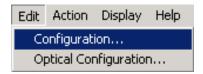

Output Settings
Sync Settings
Jitter Settings

Once the Jitter Generator is configured; press Tool on the front panel or select the tool icon using the mouse to open the desired measurement tool.

SWITCH MATRIX TOOL - DSM-I 6X

OVERVIEW

The *WAVECREST* DSM-16(x) is intended to extend the input capability of the SIATM. In Compatibility mode, the DTS-207x input capability can be extended from 2 to 16 channels as a 1 of 8 matrix to the DTS channel input (1 of 8 to channel 1, and 1 of 8 to channel 2 — See Figure below). The DSM-16(x) includes an RS232C cable for connecting to the SIA and DTS-207x Series of Digital Time Measurement products.

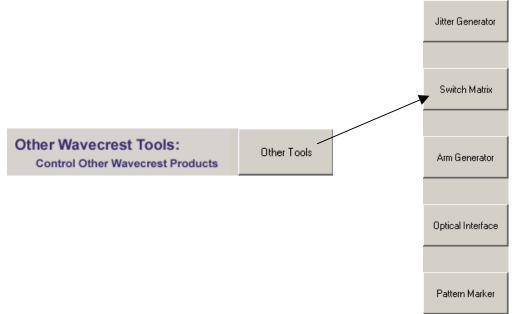


CONNECTING A DSM-16 TO THE SIA

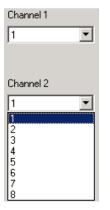
Connect the DSM-16 to the SIA using the 25-pin serial cable provided with the DSM-16. A 9-pin to 25-pin adaptor, included with the DSM, is needed to connect the cable to the back of the SIA RS-232 serial port.

Power-up both units; the DSM-16 should be started before the *GigaView* software is initialized.


If the DSM-16 is connected after the SIA is operating, select Edit on the SIA menu bar and choose C_{0} nfiguration.


The Configuration dialog box will be displayed.

)isplay					Apply
Auto-scale	Windows 🔽	Print S	ummary w/	Pages	Close
🔽 No Margin:	s 🔽	Print C	olor Backg	round	Reset
	Color		Width		
Plot Line 1	Red	•	1		Timeout (ms
Plot Line 2	Blue	-	1	-	100
Plot Line 3					Rise/Fall %
	Red		1		20% - 80%
Plot Line 4	Blue	-	1		
Grid Lines	Grey	-	1		Pattern Pa
Markers	Orange		1	-	Data Path
P					
Background	White		For	nt	Upgrade S
Device Configura	ation				
Target Device			GPIB Bo	oard	
DTS-550			0		
Device Name	(UNIX only)		GPIB D	evice	
dev4			4		
Disable Fro					


Select Reset HW, then select OK to restart *GigaView*.

After *GigaView* has restarted, select Other Tools on the main Dialog Bar and then select Switch Matrix on the Other Tools dialog bar.

Change the Input Channels of the DSM-16 by changing the number on the desired channel.

Press Tool on the front panel or select the tool icon 🔊 using the mouse to open the desired measurement tool.

This page intentionally left blank.

ARM GENERATOR IOO[™] TOOL

OVERVIEW

Please refer to your AG-100 User's Manual for more information on the operation of the instrument.

FUNCTIONS OF THE AG-IOO

- Produce a pattern marker from a data pattern.
- Perform marker placement automatically or manually.
- Generate a marker based on pattern match or transition time (Edge Count).
- Generate a marker for Fibre Channel, InfiniBand and Gigabit Ethernet signals.
- Used in compliance testing Fibre Channel and Gigabit Ethernet devices.

The *WAVECREST* AG-100 (Hardware) creates a marker from a repeating pattern. This marker is used by the *WAVECREST* SIA system and the Known Pattern with Marker tool in *WAVECREST's GigaView* software to make fast and complete jitter measurements on a given data pattern. The Marker signal can be generated for Fibre Channel, InfiniBand and Gigabit Ethernet data. For Fibre Channel and Gigabit Ethernet protocols, the AG-100 works at 1X or 2X speeds. For InfiniBand (2.5 Gb/s), the unit must be set to 2X Gigabit Ethernet.

For further jitter information, refer to the current *Fibre Channel Methodologies for Jitter Specification* document at www.t11.org.

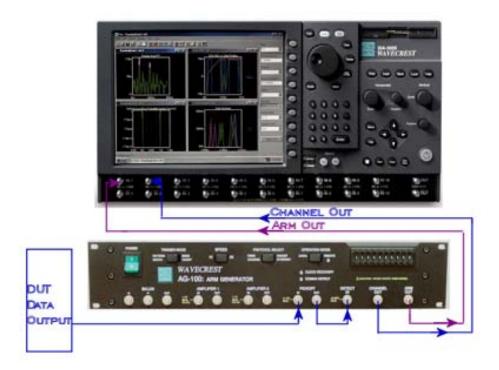
MAKING A MEASUREMENT

AG-IOO[™] SETUP

On the back of the instrument:

- Ensure AC power cable is connected.
- Connect the AG-100 to the SIATM with a standard GPIB cable.
- Check the GPIB address on the pushwheels. The SIA defaults to '07' as an expected address. The pushwheel switch setting must match the GPIB address in the SIA. If you need to change the address, go to the Edit, Configuration menu on the SIA and select AG-100 from the pull down. Then select the address that is set on the pushwheel switches on the back of the AG-100.

On the front of the instrument:


- Ensure that the "Operation Mode" switch is in the "Remote" position.
- Connect the Data Signal to the "Pickoff IN".

DO NOT exceed +/-1.9v to the "Pickoff IN"

If the signal is differential, use the Balun or a differential probe to convert to single-ended. Connect the output of the balun or probe to the "Pickoff IN". If the signal is less than 250mV p-p before the pickoff, you should use an amplifier.

- The "Pickoff OUT" should be connected to the "Detect IN" using the hardline included with the AG-100.
- Connect the "Channel OUT" to a channel input on the SIA.
- Connect the "Arm OUT" to a channel input on the SIA.

Configure the AG-100 Utility. Use the table to choose the proper mode for the data pattern to be analyzed.

Pattern Match Mode

	1x	2x	Pattern Length must be a multiple
Fibre Channel	1.06Gb/s	2.12Gb/s	of 20bits: i.e. 20, 40, 200, 2640
GigaBit Ethernet	1.25Gb/s	2.50Gb/s	to use pattern match mode. If
InfiniBand		2.50GB/s	not, Edge Count Mode must be used.

Edge Count Mode

Used for any pattern with odd number of bits (i.e. PRBS $2^7-1= 127$ bits) Used for any data rate less than 2.5Gb/s (if not a standard 1x or 2x FC or GBE)

MAKING A MEASUREMENT

Pattern Match Mode

- 1. On the Arm Generator Dialog bar select Mode >> 'pattern match'.
- 2. On the Main Arm Generator Dialog bar, select Pattern Options>>Load Pattern. A window will appear. Select the pattern that matches the pattern to be analyzed.
- 3. On the Main Arm Generator Dialog Bar, select Protocol: either "Fibre Channel" or "Gigabit Ethernet".
- 4. Next, select the Speed of the data: 1x or 2x.
- 5. On the AG-100[™] front panel verify that the light labeled "ARM ACTIVE" is illuminated.
- 6. On the main Dialog Bar, select Automatic>>Arm Number and choose the channel to which the arm is connected. Select Channel and choose the channel to which the data is connected.
- 7. On the top of the *GigaView* [™] screen, press PULSE FIND.
- 8. On the Main Dialog Bar, select Automatic>>Perform Placement. The AG-100 analyzes the data and automatically places the marker in an optimal location.
- 9. The AG-100 is now configured. Open and setup the Known Pattern with Marker and perform the measurement.

Edge Count Mode

- 1. On the Armgen Main Dialog bar select Mode>>'Edge Count'.
- 2. On the Main Armgen Dialog bar, select Pattern>>Load Pattern. Select the appropriate pattern. The selected pattern is used to calculate the number of edges for the edge count mode.
- 3. On the AG-100 front panel, verify that the light labeled "ARM ACTIVE" is illuminated. Note, that the illumination of this light may take ~1minute after switching from pattern match to edge count mode. Do not proceed until "Arm Active" is illuminated.
- 4. On the main Dialog Bar, select Automatic>>Arm Number and choose the channel to which the arm is connected. Select Channel and choose the channel to which the data is connected.
- 5. Along the top portion of the GigaView screen, press PULSE FIND.
- 6. On the Main Dialog Bar, select Automatic>>Perform Placement. The AG-100 analyzes the data coming into the unit and automatically places the marker in an optimal location.
- 7. The AG-100 is now configured. Open and setup the Known Pattern with Marker and perform the measurement.

AG-IOO[™] THEORY OF OPERATION

The AG-100 works with Fibre Channel, GigaBit Ethernet and InfiniBand data rates in Pattern Match mode. For Fibre Channel and Gigabit Ethernet protocols, the instrument works at either 1X or 2X speeds. For InfiniBand (2.5Gb/s) the unit must be set to for 2X Gigabit Ethernet operation. In Edge Count mode the AG-100 works up to 2.5Gb/s.

The Arm Generator allows the user to easily adapt to various testing environments. The unit contains an internal balun used to convert differential signals to single ended signals for use by the instrument. Two amplifiers are also provided for signal amplification. The amplifiers can be used to boost the input signal before the pickoff or to boost the signal to the "Detect In" port after the pickoff. If the signal at the "IN" port of the pickoff is less than 250mV p-p it is recommended that an amplifier be used. The amplifiers have a 3GHz, 3db bandwidth. It is very important to note that the amplifiers will invert the signal in the time domain. A simple way to correct a data pattern inversion is to pre-invert the data signal using the balun on the front panel. This is done by inserting the positive half of the data signal into the negative port of the balun and the negative half into the positive port. If a differential probe is being used the signal can be pre-inverted by flipping the probe polarity.

A high bandwidth pickoff is used to couple the data signal into the AG-100 in order to produce an arming pulse. For proper operation the "Channel Out" port needs to be terminated at 50Ω when it is not connected to the instrument's measurement channel.

The unit may be used from the front panel or remotely via the GPIB interface. Once set for remote operation, the GPIB interface gives users full control of the unit though a module in the *GigaView* Software.

OE-2 TOOL

OVERVIEW

The *WAVECREST* **OE-2** converts optical communication signals into electrical signals. Combining a *WAVECREST* DTS or SIA system with an **OE-2** provides accurate, high performance jitter and timing measurements on optical signals. The **OE-2** can be controlled through its GPIB interface or with *WAVECREST's* **GigaView** software.

The **OE-2** incorporates all of the features needed for taking dual-channel, high performance optical signal measurements.

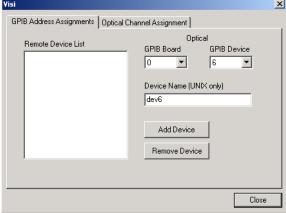
High Bandwidth – Enables measurement of new, high-speed data communication signals.

Built-In Amplifiers - Boosts low power signals to measurable levels.

Built-in Filters – Improves signal-to-noise ratio of optical signals. Available filter options include Fibre Channel (1.06 GBd), Fibre Channel (2.12 Gbd), Gigabit Ethernet, InfiniBand, XAUI and SONET OC-48.

Power Meter – Each channel of the **OE-2** includes an optical power meter.

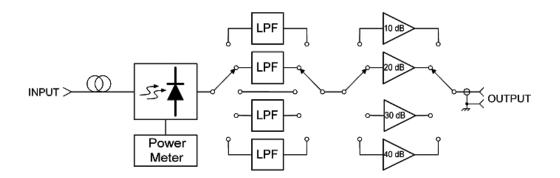
High Speed Measurements – A DTS or SIA system with an **OE-2** can quickly measure jitter, rise and fall times, average optical power and extinction ratio.


Please refer to your **OE-2** manual for further information

OPTICAL TOOL CONFIGURATION

The Optical Configuration menu selection permits optical instrument settings to be modified. The user can customize GPIB board and device addresses.

The **GPIB** Address Assignments window manages the address settings for both the GPIB host and the remote OE-2(s). Up to five can be addressed in a single system. The GPIB Board selection controls the host GPIB address while the GPIB Device selection sets the address of the remote OE-2(s). Set the GPIB Device setting to the DIP switch setting on the back panel of the OE-2 and select the Add Device button. The OE-2 address will appear in the Remote Device List. In the case of multiple OE-2 installations, each remote device will have to be added individually.


Clicking on the **Optical Channel Assignment** tab will initiate the GPIB polling process to see that each OE-2 is correctly addressed. Each OE-2 correctly addressed will be shown in the Optical Input window, along with its GPIB device address. If an OE-2 connected to the bus does not appear in the window, its address may be incorrectly set. Return to the GPIB Address Assignment window to correct the address settings.

/isi						X
GPIB Address A	ssignments	Optical Channel	Assignment			
Channel	Optical In	put	Chann	iel 🗍	Status	
Active 🗖						
	•					
					Close	

OPTICAL INTERFACE THEORY

The OE-2 consists of a high-performance optical-to-electrical converter followed by wide-bandwidth signal processing devices. Dual-channel models include two identical signal paths. The block diagram below shows the structure of a single-channel OE-2.

The optical input signal is converted to an electrical current using a low-noise, temperature-stabilized photoreceiver.

The electrical signal is amplified by a wideband transimpedance amplifier (TIA) that is integrated with the photoreceiver.

Because optical signals may have high levels of wideband noise, they are often filtered to improve the signal-to-noise ratio. Communications standards require a fourth-order Bessel-Thomson low-pass filter characteristic with a cut-off frequency of 75% of the data rate. Each channel of the OE-2 has four filters—for different communications protocols—selectable by electronic switches. In addition, a fifth setting bypasses the filters for full-bandwidth operation.

Filter settings can be selected independently for each channel with a front panel control or through the GPIB interface.

A bank of wideband electronic amplifiers follows the filters. These amplifiers, also electronically switched, amplify the electrical signal by 10 dB, 20 dB, 30 dB, or 40 dB. The amplifier setting can be selected independently for each channel either with a front panel control or through the GPIB interface.

The average current in the photoreceiver is measured to determine the average optical power of the input signal. This average power value is available only through the GPIB interface.

The signal gain in every filter path and every amplifier path in the OE-2 is measured and stored locally in the OE-2. These calibration values are used by Wavecrest *GigaView* software to display accurate optical signal power levels.

All OE-2 functions are controlled by a central processor. The processor also handles communications with the GPIB interface port.

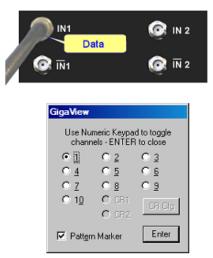
PM50 Tool

OVERVIEW

The *WAVECREST* PM50, included with each channel card of the SIA, enables the user to obtain compliant jitter measurements. By inputting a data stream with a repeating pattern, the user can gather quantitative information on DJ, RJ, PJ, DCD&ISI and their contribution to Total Jitter.

FUNCTIONS OF THE PM50

- Generate a pattern marker based on pattern match at discrete data rates or in edge count for data rates up to 12.5Gb/s.
- Generate a marker for many data standards such as Fibre Channel, InfiniBand, Gigabit Ethernet, Serial ATA and XAUI to enable jitter compliance measurements.
- Record and display bit errors in pattern match mode.


APPLICATIONS OF THE PM50 OPTION USING THE KNOWN PATTERN WITH MARKER TOOL

- Analyze a data pattern and decompose or separate the various jitter components so the designer can better understand and improve system performance.
- Measure the Deterministic Jitter (DJ) components: Duty-Cycle Distortion and Intersymbol Interference (DCD+ISI), Periodic Jitter (PJ).
- Measure the Gaussian—or Random Jitter (RJ) component.
- View DCD+ISI relative to pattern transition density.
- Compliance testing Fibre Channel, Gigabit Ethernet, InfiniBand and XAUI devices.
- Advanced (not covered in this guide): View jitter data and model the signal as seen by the receiver, filtering RJ and PJ or altering acquisition configuration.

MAKING A MEASUREMENT USING THE PM50 AND THE KNOWN PATTERN WITH MARKER TOOL

This tool requires the signal under test to be a repeating pattern. Internally, the tool creates a "Pattern Trigger" or "Pattern Sync" for analysis. In some cases, a unique pattern is used that is not in the SIA-4000 library, or the pattern is longer than what the SIA will automatically detect. These unique cases are described later in the document.

• Connect a repeating data signal to Channel 1.

- From the main KPWM menu, press Acquire Options.
- Press Arm Number. A Dialog Box will open. (See figure above.) Ensure Channel 1 is selected and Pattern Marker is checked.
- Press Add/Del Channel and ensure Channel 1 is checked.
- The –3dB corner frequency default is the bit rate/1667. This is the PLL characteristic of many Serdes devices. To enter a manual corner frequency choose User Defined and enter the corner frequency.
- Press Pulse Find . It is important to perform a pulse find. This sets the voltage threshold at which jitter is measured
- Press Pattern Options.
- Press Detect Pattern. This will detect the pattern present. Patterns longer than 2048 edges cannot be automatically detected. An example would be a PRBS 2^15-1 pattern. For these patterns, you must load it from the library on the SIA-4000. Press Load Pattern to load the *.ptn file. If your pattern is not preloaded, it is possible to learn it.
- Now you can make your Measurement: Press Acquire 🖻 or Single/Stop on the front panel.

This tool acquires a number of different measurements. There are different views of the results that can be seen by changing the current view in the upper right of the menu bar. Views can be added so that all are present on the screen at the same time. When clear is pressed all results are cleared and pressing Acquire will reacquire all of the measurements at one time. See Section 2 that describes the views.

Edge Count mode counts a number of edges and then generates the marker. By choosing the pattern, the number of rising edges in that pattern is automatically calculated and used as the number of edges to count.

Pattern Match mode has some restrictions and is used to generate a marker when the data has occasional insertions of bits (idles, for example). Pattern Match mode must also be used with the Bit Error Counting (BEC) capability in the PM50 utility. The data must be at one of the specific rates in the "Patn Mkr Standard" pull-down menu such as 1x FC, 2x FC, etc. Additionally the pattern must be 10, 20, 40 bits or divisible by 40. The pattern match word must contain a K28.5 character.

In cases where there are over 20ps of PJ, enable TailFit to determine an accurate RJ. TailFit is located in the "RJ+PJ Options" menu. Choosing 'All' or 'Auto' may significantly increase test time. To TailFit a fixed number of points, choose 3, 5, 9, or 17.

If you wish to decrease test time, "Quick Mode" may be used. Use caution when interpreting results with "Quick Mode" turned on. This mode samples more sparsely and will not show high frequency (HF) information. Or, if HF content is present, aliasing may occur in the FFT view. Therefore, "Quick Mode" should not be used unless there is no HF present (near ¹/₂ the bit rate).

POSSIBLE ERRORS AND SOLUTIONS


"Failed bit rate calc – bad pattern or signal" or *"Failed DCD+ISI Measure – bad pattern or signal"* This error generally indicates that the pattern that the SIA is measuring at the input channel is not the same as the pattern chosen. Check that the signal is present and the input pattern matches the chosen pattern. Press "Perform Placement" in the "Arm Setup" selection to place the marker again.

INTERPRETING PM50 VIEWS (PLOTS)

- Pattern View Plots the number of errors versus bit location in the data pattern when using the Bit Error Counter
- Summary View Pattern marker information in text format

PATTERN VIEW

This view plots the number of errors versus bit location in the data pattern when using the Bit Error Counter. Used only in Pattern Match Mode, this view is useful for locating specific errors in the pattern that may repeatedly occur.

SUMMARY VIEW

This view displays Pattern Marker information in text format.

	ion Display Yiew Utilities		_0
N 📽 🖬 😂 🗌			View
attern Marker Su		NO ARMING SIGNAL FOUND	Sumnary .
attern Marker PM1	Standard Infiniband 2.5 Gb/s	Mode Patien Metch	Pattern Marker
otem File	Total Delay	Edge Count 699	Patien Maiker
rpat.pin	0s	698	
			Pain His Standard Infinitend 25 Gt
			Innicent 2.5 or.
			Patn Hks Node
			Pattern Match
			Pattern Option
			Total Delay (no)
			0.00000
			Display Errors
			Recet Counter
			-1
1000			

PATTERN MARKER THEORY

The PM50 produces a pattern marker from a 40-bit unique portion of the pattern or by counting a user specified number of data edges. The pattern marker option decreases the measurement time compared to using a pattern generator pattern marker or pattern trigger because the PM50 option generates a marker for every pattern repeat. For example, a typical data analysis on a PRBS 215-1 pattern will take ~2 minutes with the pattern marker option but will take over an hour using a pattern marker from a pattern generator. Additionally, the pattern marker card, along with the *GigaView* software, automatically locates the marker in a low transition density region of the pattern eliminating the need to use lines to place the pattern marker in an optimal location thus ensuring reliable and repeatable results.

The PM50 option also has the capability to detect bit errors in the pattern. The capability of logging bit errors is useful for capturing low probability events. The user can view the errors and their location in the pattern as illustrated in Figures 9 and 10. The ability to detect bit errors provides additional information about low probability errors, BER, and pattern dependent errors. Bit error counting can be performed at distinct frequencies in pattern match mode.

FOLDED EYE DIAGRAM TOOL

This tool will display an Eye Diagram/Eye Mask using the Bandwidth Extension. A repeating pattern is required for this tool.

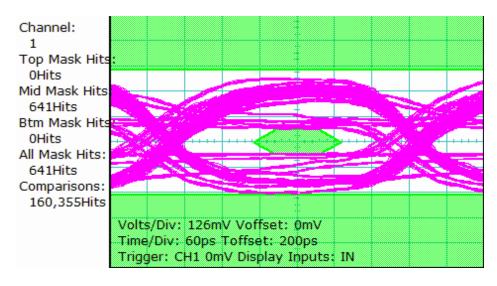
This tool utilizes the PM50 so that the Oscilloscope can trigger on the waveform. The waveform must be periodic such as a clock or repeating pattern. After the waveform is measured, Bandwidth Extension is applied to the waveform enhancing the analog bandwidth to 10GHz and then the eye is created by folding the data pattern around a 1UI interval. This interval is set in the Bit Rate setting. Auto Scale will automatically set this when the signal is under 6 Gb/s. The Mask can be configured using Mask Setup.

This tool will allow more accurate eye mask tests at higher data rates, such as 4x Fibre Channel.

FOLDED EYE DIAGRAM TOOL SETUP

To make the measurement, you must have a repeating pattern.

- Connect the repeating pattern to CH1 (with pattern marker).
- Load the Pattern (if not already loaded) by pressing "Trigger" and "Open PM Utility".
- Press "Pattern Options" and "Load Pattern".
- Choose your pattern from the list.
- Press Auto Scale and the waveform will be displayed.


In the Display Options Menu, you can change the resolution of the measurement down to 1ps. The Record Length setting should be set comparable to your pattern length so that all of the bits in the pattern are folded onto each other to create the eye.

If the signal is less than 6Gb/s you can press "Auto Scale" and the eye should appear on the screen. If the signal is above 6Gb/s, the bit rate must be entered in the Bit Rate (Gb/s) Box.

INTERPRETING VIEWS (PLOTS)

EYE DIAGRAM VIEW

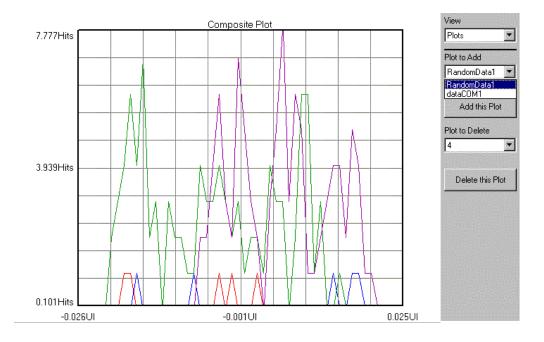
This view shows a mask and the eye diagram with the bandwidth extension enabled.

SUMMARY VIEW

This view shows hits in the mask region compared to how many samples are on the screen.

🚉 FoldedEyeDiagra	m1	
Folded Eye Diagr	am Summary	_
Channel	CH1	
Trigger	CH1	
Display Inputs	IN	
Attenuation	0dB/1X	
Top Mask Hits	OHits	
Mid Mask Hits	641Hits	
Btm Mask Hits	OHits	
All Mask Hits	641Hits	
Comparisons	160,355Hits	
*Bandwidth enha	ancement enabled	
*CR correction e	nabled	
T		▼ I

FOLDED EYE DIAGRAM THEORY


The "folded eye" tool provides the capability to perform an eye mask measurement using the enhanced bandwidth setting. The oscilloscope tool cannot create an eye mask with the bandwidth enhancement enabled. This is because the bandwidth enhancement requires a periodic waveform. So this tool builds an eye by triggering on a pattern marker (and so requires a repeating pattern) and stepping through the pattern to fold each bit around one Unit Interval. This tool works with the Bandwidth enhancement enabled in the Global Tool Settings dialog box under the Edit pull-down menu.

COMPOSITE PLOT TOOL

Access to this tool is through the Toolbar by clicking on the $rac{1}{2}$ button.

The Composite Tool is used to overlay various plots that relate to each other. The plots must be of the same plot type, for instance, overlaying multiple FFT's. Different plot types cannot be overlaid, such as an FFT and a Histogram.

To overlay plots, select the View in the tool that has the plot that you want to overlay. Open Composite Tool and select the plot from the View pull-down menu and press Add this Plot. Repeat this process to add other plots.

This page intentionally left blank.

GigaView provides Macro Record and Playback features for scripting and automating activities performed on a repetitive basis. The Macro interface is based on Microsoft's VBScript language, which includes the ability to control program execution using conditional and looping statements.

Macros can be recorded and then modified, or written from scratch. The Macro interface can also be used to access *GigaView* functions from an external application. In particular, Microsoft® Visual Basic may be used, but other programs which support the VBScript language such as Microsoft Word and Excel may also be used.

In order for the VBScript engine to access *GigaView*'s functionality, a variable that acts as a placeholder to the application must be dimensioned and initialized as follows:

```
Dim Visi
Set Visi = CreateObject ("Visi.Application")
```

This is automatically done for you if the macro is recorded. If you are writing your macro from scratch, you will need to include this initialization as well. This variable is then used on all subsequent calls to access the *GigaView* application, for example:

```
Dim Visi
Set Visi = CreateObject ("Visi.Application")
Visi.New ("Histogram")
Visi.New ("Oscilloscope")
Visi.Tile
```

MACRO COMMANDS

Annotate Method - Provides a mechanism to append a note to the statistics page of the current tool.

Syntax

AppObj.**Annotate**(*Text*) *AppObj* is the required *GigaView* Application Object. *Text* is the required **String** defining the text to be added to the statistics page.

Example

```
Dim Visi
Set Visi = CreateObject("Visi.Application")
Visi.New("Histogram")
Visi.Annotate("This is a text string appended to the Histogram statistics page.")
```

AutoConfig Method - Issues the AutoConfig command to the current tool. This command normally resets all parameters (except the channel) to default values, issues a pulsefind command, and then performs a single acquisition.

Syntax

AppObj.AutoConfig *AppObj* is the required *GigaView* Application Object.

Example

```
Dim Visi
Set Visi = CreateObject ("Visi.Application")
Visi.New ("Histogram")
Visi.AutoConfig
```

Cascade Method - This method cascades all the child views inside the main window frame.

Syntax

```
AppObj.Cascade
AppObj is the required GigaView Application Object.
```

Example

```
Dim Visi
Set Visi = CreateObject("Visi.Application")
Visi.New("Histogram")
Visi.New("Oscilloscope")
Visi.Cascade
```

Clear Method - This method clears any data and plots associated with the current tool.

Syntax

*AppObj.***Clear** *AppObj* is the required *GigaView* Application Object.

Example

```
Dim Visi
Set Visi = CreateObject("Visi.Application")
Visi.New("Histogram")
Visi.SingleStop
Visi.Clear
```

Close Method - This method closes the current view. If this is the only view associated with the current tool, the tool will be closed.

Syntax

AppObj.Close *AppObj* is the required GigaView Application Object.

Example

```
Dim Visi
Set Visi = CreateObject("Visi.Application")
Visi.New("Histogram")
Visi.Close
```

Copy Method - This method copies the contents of the current view to the Windows clipboard.

Syntax

AppObj.Copy *AppObj* is the required GigaView Application Object.

Example

```
Dim Visi
Set Visi = CreateObject("Visi.Application")
Visi.New("Histogram")
Visi.SingleStop
Visi.Copy
```

DialogBar Method - This method can be used to hide or show the Dialog Bar which is used to modify tool parameters.

Syntax

AppObj.**DialogBar**(*Show*) *AppObj* is the required *GigaView* Application Object. *Show* is the required **Boolean** variable indicating whether the DialogBar should be shown or not.

Example

Dim Visi Set Visi = CreateObject ("Visi.Application") Visi.New ("Histogram") Visi.DialogBar(False)

DisableAll Method - This method can be used to cancel measurements being taken on any active tools, and to disable outputs on a Jitter Generator if connected and active.

Syntax

*AppObj.***DisableAll** *AppObj* is the required GigaView Application Object.

Example

Dim Visi Set Visi = CreateObject ("Visi.Application") Visi.New ("Histogram") Visi.SingleStop Visi.DisableAll

Exit Method - This method can be used to terminate the *GigaView* application. Measurements being taken on an active tool are canceled, the outputs to an active Jitter Generator are disabled, and all tools are closed prior to termination.

Syntax

AppObj.Exit *AppObj* is the required GigaView Application Object.

Example

Dim Visi Set Visi = CreateObject ("Visi.Application") Visi.New ("Histogram") Visi.SingleStop Visi.Exit

FftInDbs Method - This method can be used to determine whether FFT y-axis information in the current view will be displayed on a linear scale or on a logarithmic scale (dB's).

Syntax

AppObj.**FftInDbs**(*Decibels*) *AppObj* is the required GigaView Application Object. *Decibels* is the required **Boolean** variable indicating whether the current view should be shown in decibels.

Example

Dim Visi Set Visi = CreateObject ("Visi.Application") Visi.New ("dataCOM") Visi.FftInDbs(True) **GpibClose Method** - This method can be used to terminate a connection previously opened using the GpibOpen method.

Syntax

AppObj.GpibClose(DevID)

AppObj is the required GigaView Application Object. *DevID* is the required Numeric variable that was returned on a previous call to the GpibOpen method.

Example

Dim Visi Set Visi = CreateObject ("Visi.Application") Visi.New("Histogram") Dev = Visi.GpibOpen("", 0, 6) Visi.GpibSend Dev, ":ARM:SOUR IMM;:TRIG:SOUR INT2" Visi.GpibSend Dev, ":FREQ 150 MHZ" Visi.GpibSend Dev, ":DIG:PATT:DATA #220732222232323333232" Visi.GpibSend Dev, ":DIG:SIGN1:FORM NRZ;:DIG:SIGN2:FORM RZ" Visi.GpibSend Dev, ":PULS:HOLD2 DCYC;:PULS:DCYC2 50" Visi.GpibSend Dev, ":DIG:PATT ON" Visi.GpibSend Dev, ":HOLD VOLT;:VOLT1:HIGH 800 MV;:VOLT1:LOW -800 MV" Visi.GpibSend Dev, ":HOLD VOLT;:VOLT2:HIGH 800 MV;:VOLT2:LOW -800 MV" Visi.GpibSend Dev, ":PULS:TRIG1:VOLT ECL" Visi.GpibSend Dev, ":PULS:TRIG2:VOLT ECL" Visi.GpibSend Dev, ":OUTP1 ON;:OUTP2:POL INV;:OUTP2 ON;" Visi.GpibClose(Dev)

GpibOpen Method - This method can be used to open a connection with a GPIB (General Purpose Interface Bus) device. This provides a convenient means to control common laboratory equipment from within GigaView.

Syntax

AppObj.GpibOpen(DeviceName, BoardNumber, AddressNumber)

AppObj is the required GigaView Application Object.

- *DeviceName* is the required String variable that defines the name of the target device on UNIX systems. This variable is <u>not</u> used on Microsoft systems.
- *BoardNumber* is the required Numeric variable that defines the number of the interface card to which the device is connected. The first board in the system is designated 0; the second board in the system is designated 1; etc.
- *AddressNumber* is the required Numeric variable that defines the address that has been assigned to the target device. The method by which this address is configured varies from instrument to instrument, check the Users Manual of the target device for details. You should not have multiple instruments on the same bus with duplicate addresses. This variable is <u>not</u> used on UNIX systems.
- **Returned Value -** If the device is successfully opened a positive **Numeric** value will be returned which is then used as an ID on subsequent calls to read or write to the device. If the device cannot be opened a negative **Numeric** value will be returned.

Example

Dim Visi Set Visi = CreateObject ("Visi.Application") Visi.New("Histogram") Dev = Visi.GpibOpen(", 0, 6) 'Address 6 on Microsoft platforms ' Dev = Visi.GpibOpen("dev6", 0, 6) 'Address 6 on Sun Solaris platforms ' Dev = Visi.GpibOpen("hib,6", 0, 6) 'Address 6 on HP-UX platforms Visi.GpibSend Dev, ":ARM:SOUR IMM;:TRIG:SOUR INT2" Visi.GpibSend Dev, ":FREQ 150 MHZ" Visi.GpibSend Dev, ":DIG:PATT:DATA #22073222232323333232" Visi.GpibSend Dev, ":DIG:SIGN1:FORM NRZ;:DIG:SIGN2:FORM RZ" Visi.GpibSend Dev, ":PULS:HOLD2 DCYC;:PULS:DCYC2 50" Visi.GpibSend Dev, ":DIG:PATT ON" (GpibOpen Method continued)

Visi.GpibSend Dev, ":HOLD VOLT;:VOLT1:HIGH 800 MV;:VOLT1:LOW -800 MV" Visi.GpibSend Dev, ":HOLD VOLT;:VOLT2:HIGH 800 MV;:VOLT2:LOW -800 MV" Visi.GpibSend Dev, ":PULS:TRIG1:VOLT ECL" Visi.GpibSend Dev, ":PULS:TRIG2:VOLT ECL" Visi.GpibSend Dev, ":OUTP1 ON;:OUTP2:POL INV;:OUTP2 ON;" Visi.GpibClose(Dev)

GpibRead Method - This method can be used to retrieve data from a GPIB (General Purpose Interface Bus) device on a connection previously opened using the GpibOpen method. This method is called subsequent to a GpibSend command requesting information from the device.

Syntax

AppObj.GpibRead(DevID, MaxCnt)

AppObj is the required GigaView Application Object.

DevID is the required Numeric variable that was returned on a previous call to the GpibOpen method. *MaxCnt* is a required Numeric variable that defines the maximum number of data characters to be returned. If fewer characters are available they will all be returned. However, no more than this many characters can be returned under any circumstances.

Returned Value - If data is available and the device is successfully read, the available data will be returned as a **String**.

Example

Dim Visi Set Visi = CreateObject ("Visi.Application") Dev = Visi.GpibOpen("", 0, 6) Visi.GpibSend Dev, "*IDN?" Idn = Visi.GpibRead(Dev, 1000) Visi.GpibClose(Dev) Visi.MsgBox Idn

GpibSend Method - This method can be used to send data to a GPIB (General Purpose Interface Bus) device on a connection previously opened using the GpibOpen method.

Syntax

AppObj.GpibSend(DevID, Command)

AppObj is the required GigaView Application Object.

DevID is the required Numeric variable that was returned on a previous call to the GpibOpen method. **Command** is a required String variable that defines the command to be sent to the device.

Example

Dim Visi Set Visi = CreateObject ("Visi.Application") Dev = Visi.GpibOpen("", 0, 6) Visi.GpibSend Dev, ":FREQ 150 MHZ" Visi.GpibClose(Dev)

Grid Method - This method can be used to hide or show the Grid on the current plot view.

Syntax

AppObj.**Grid**(*Show*) *AppObj* is the required GigaView Application Object. *Show* is the required **Boolean** variable indicating whether a Grid should be displayed on the current plot view.

Example

Dim Visi Set Visi = CreateObject ("Visi.Application") Visi.New ("Histogram") Visi.Grid(False) **MarkerMode Method** - This method can be used to hide or show the Horizontal and Vertical Markers on the current plot view.

Syntax

AppObj.MarkerMode(HorzShow, VertShow)

AppObj is the required GigaView Application Object.

HorzShow is the required **Boolean** variable indicating whether the Horizontal Markers should be displayed on the current plot view.

VertShow is the required **Boolean** variable indicating whether the Vertical Markers should be displayed on the current plot view.

Example

Dim Visi Set Visi = CreateObject ("Visi.Application") Visi.New ("Histogram") Visi.MarkerMode True, False

MarkerMove Method - This method can be used to move the Horizontal and Vertical Markers to a specific location on the current plot view.

Syntax

AppObj.MarkerMove(Horz1, Horz2, Vert1, Vert2)

AppObj is the required GigaView Application Object.

Horz1 and *Horz2* are the required **Numeric** variables indicating the 2 relative Horizontal Marker locations within the current plot view. 0 is the minimum value and represents the bottom of the plot. 1000 is the maximum value and represents the top of the plot window.

Vert1 and *Vert2* are the required **Numeric** variables indicating the 2 relative Vertical Marker locations within the current plot view. 0 is the minimum value and represents the left of the plot. 1000 is the maximum value and represents the right of the plot window.

Example

Dim Visi Set Visi = CreateObject ("Visi.Application") Visi.Open ("C:\Visi\dataCOM1.vtd") Visi.MarkerMode True, True Visi.MarkerMove 500, 900, 500, 900

Maximize Method - This method maximizes the current child view inside the main window frame.

Syntax

AppObj.**Maximize** *AppObj* is the required GigaView Application Object.

Example

Dim Visi Set Visi = CreateObject ("Visi.Application") Visi.Open ("C:\Visi\dataCOM1.vtd") Visi.Open ("C:\Visi\Histogram1.vtd") Visi.Maximize

Minimize Method - This method minimizes the current child view inside the main window frame.

Syntax

AppObj.**Minimize** *AppObj* is the required GigaView Application Object.

Example

```
Dim Visi
Set Visi = CreateObject ("Visi.Application")
Visi.Open ("C:\Visi\dataCOM1.vtd")
Visi.Open ("C:\Visi\Histogram1.vtd")
Visi.Minimize
```

Modify Method - This method provides a means to change tool parameters listed in the Dialog Bar on the right side of the main window frame. The menu containing the parameter to be changed must be active. The **Options** method can be used to make it active.

Syntax

AppObj.Modify(Label, Value) AppObj is the required GigaView Application Object. Label is a required String variable that contains the identifier for the parameter to be changed. Value is a required String variable that contains the new value to be used.

Example

Dim Visi Set Visi = CreateObject ("Visi.Application") Visi.New ("JitterGenerator") Visi.Modify "Sync Mode", "Jitter Sync" Visi.Modify "Frequency (MHz)", "250.0" Visi.Options 2 Visi.Options 2 Visi.Modify "Reset All", "" 'Activate a pushbutton control

MsgBox Method - This method can be used to provide information to the program user.

Syntax

AppObj.MsgBox(Message)

AppObj is the required GigaView Application Object. *Message* is a required **String** variable that contains the message to the user.

Example

Dim Visi Set Visi = CreateObject ("Visi.Application") Visi.New ("Histogram") For FREQ = 10 To 50 Step 10 MESG = "Set Signal Generator to " & FREQ & " MHz" Visi.MsgBox MESG Visi.SingleStop Next

New Method - This method can be used to create a new tool.

Syntax

AppObj.**New(***ToolType***)** *AppObj* is the required GigaView Application Object. *ToolType* is a required **String** variable that contains the type of tool to create. It may be one of the following:

BitClockDataCom	CompositePlot
HiFreqMod	Histogram
JitterGenerator	Locktime
LoFreqMod	MarkerDataCom
MarkerlessDataCom	Oscilloscope
PhaseNoise	RandomDataCom
Skew	Statistics
StripChart	SwitchMatrix

Example

Dim Visi Set Visi = CreateObject ("Visi.Application") Visi.New ("Histogram") Visi.New ("Oscilloscope") NewWindow Method - This method can be used to create an additional view of the current tool.

Syntax

```
.
AppObj.NewWindow
```

AppObj is the required GigaView Application Object.

Example

```
Dim Visi
Set Visi = CreateObject ("Visi.Application")
Visi.New ("Histogram")
Visi.NewWindow
```

Open Method - This method can be used to open a previously saved tool.

Syntax

```
AppObj.Open(ToolPath)
AppObj is the required GigaView Application Object.
ToolPath is a required String variable that contains the path to the tool to be opened.
```

Example

Dim Visi Set Visi = CreateObject ("Visi.Application") Visi.Open ("C:\Visi\Oscilloscope1.vtd")

Options Method - This method can be used to select which Dialog Bar menu is displayed.

Syntax

AppObj.**Options** *Page AppObj* is the required GigaView Application Object. *Page* is a required **Numeric** variable that contains the number of the page (1-N) to be displayed.

Example

Dim Visi Set Visi = CreateObject ("Visi.Application") Visi.New ("Histogram") Visi.Options 2

Overlay Method - This method can be used to select the number of overlays to be displayed.

Syntax

```
AppObj.Overlay Count
AppObj is the required GigaView Application Object.
Count is a required Numeric variable that contains the number of overlays (0, 1, 2, 4, or 8) to be displayed.
```

Example

```
Dim Visi
Set Visi = CreateObject ("Visi.Application")
Visi.New ("Histogram")
Visi.Overlay 4
```

PulseFind Method - Issues the PulseFind command to the current tool.

Syntax

AppObj.**PulseFind** *AppObj* is the required GigaView Application Object.

Example

```
Dim Visi
Set Visi = CreateObject ("Visi.Application")
Visi.New ("Histogram")
Visi.PulseFind
```

Print Method - Issues the Print command to the current tool. The default printer and current print settings will be used.

Syntax

AppObj.Print

AppObj is the required GigaView Application Object.

Example

Dim Visi Set Visi = CreateObject ("Visi.Application") Visi.New ("Histogram") Visi.Print

Restore Method - This method restores the current child view to its normal size within the main window frame. This command will reverse the effect of a Minimize or Maximize command.

Syntax

AppObj.**Restore** *AppObj* is the required GigaView Application Object.

Example

Dim Visi Set Visi = CreateObject ("Visi.Application") Visi.Open ("C:\Visi\Histogram1.vtd") Visi.Minimize Visi.Restore

Save Method - This method can be used to open a previously saved tool.

Syntax

*AppObj.***Save(***ToolPath***)** *AppObj* is the required GigaView Application Object. *ToolPath* is a required **String** variable that contains the path to save the tool to.

Example

Dim Visi Set Visi = CreateObject ("Visi.Application") Visi.New ("Histogram") Visi.SingleStop Visi.Save ("C:\Visi\Histogram1.vtd")

Select Method - This method allows a user to select which view is currently active within the main window frame. This tool will have the focus for all the subsequent commands.

Syntax

AppObj.Select(ViewName)

AppObj is the required GigaView Application Object.

ViewName is a required **String** variable that contains the name of the window to receive input focus. This name can be obtained from the list of available views which is presented when the **View** menu is activated. These view names are also displayed in the Title Bars of the individual views.

Example

Dim Visi Set Visi = CreateObject ("Visi.Application") Visi.New ("Histogram") Visi.New ("HiFreqMod") Visi.SingleStop Visi.Select ("Histogram1") Visi.SingleStop **Show Method** - This method makes the GigaView application visible. It is only necessary if GigaView is launched via an external program such as Microsoft's Visual Basic.

Syntax

AppObj.**Show** *AppObj* is the required GigaView Application Object.

Example

Dim Visi Set Visi = CreateObject ("Visi.Application") Visi.Show Visi.New ("Histogram")

SingleStop Method - Issues the SingleStop command to perform a single acquisition on the current tool. If the current tool is in the process of being cycled, it will stop cycling at the completion of the next successful acquisition.

Syntax

*AppObj.*SingleStop *AppObj* is the required GigaView Application Object.

Example

Dim Visi Set Visi = CreateObject ("Visi.Application") Visi.New ("Histogram") Visi.SingleStop

StatusBar Method - This method can be used to hide or show the StatusBar at the bottom of the main window frame.

Syntax

AppObj.**StatusBar**(*Show*) *AppObj* is the required GigaView Application Object. *Show* is the required **Boolean** variable indicating whether the StatusBar should be shown or not.

Example

Dim Visi Set Visi = CreateObject ("Visi.Application") Visi.New ("Histogram") Visi.StatusBar(False)

Tile Method - This method tiles all the child views inside the main window frame.

Syntax

AppObj.**Tile** *AppObj* is the required GigaView Application Object.

Example

Dim Visi Set Visi = CreateObject ("Visi.Application") Visi.New ("Histogram") Visi.New ("Oscilloscope") Visi.Tile

ToolBar Method - This method can be used to hide or show the ToolBar at the top of the main window frame.

Syntax

AppObj.ToolBar(Show)

AppObj is the required GigaView Application Object. *Show* is the required **Boolean** variable indicating whether the ToolBar should be shown or not.

Example

Dim Visi Set Visi = CreateObject ("Visi.Application") Visi.New ("Histogram") Visi.ToolBar(False) View Method - This method can be used to select which Plot View is displayed for the current tool.

Syntax

AppObj.**View** *NewView AppObj* is the required GigaView Application Object. *NewView* is a required **Numeric** variable that contains the number of the Plot View (1-N) to be displayed.

Example

Dim Visi Set Visi = CreateObject ("Visi.Application") Visi.New ("Histogram") Visi.View 2

Zoom Method - This method can be used to set the Zoom within the current plot view.

Syntax

AppObj.Zoom(Xmin, Ymin, Xmax, Ymax)

AppObj is the required GigaView Application Object.

Xmin, Ymin, Xmax, and *Ymax* are the required **Numeric** variables indicating the relative Zoom location within the current plot view. The valid range of values is 0 - 1000, where the minimum value must be less than the maximum value. Since it is possible to Zoom Out from the default extents, the normal default extents are actually represented by a value of 400 and 600. A value of 0 and 1000 actually represents a view that is Zoomed Out by a factor of 5.

Example

Dim Visi Set Visi = CreateObject ("Visi.Application") Visi.Open ("C:\Visi\dataCOM1.vtd") Visi.Zoom 450, 450, 550, 550 Visi.MsgBox "This is zoomed to 50% of normal" Visi.Zoom 400, 400, 600, 600 Visi.MsgBox "This is zoomed to the default extents"

COMPARISON OPERATORS - Used to compare expressions.

Syntax

result = expression1 comparisonoperator expression2

Operator	Description
<	Less than
<=	Less than or equal to
>	Greater than
>=	Greater than or equal to
=	Equal to
\diamond	Not equal to

CONTROLLING PROGRAM EXECUTION - Using conditional statements and looping statements (also known as control structures), you can write code that makes decisions and repeats actions.

If...Then...Else

If condition Then statements [Else elsestatements]

Or, you can use the following, more versatile syntax:

```
If condition Then
[statements]
[Elself condition-n Then
[elseifstatements]]...
[Else
[elsestatements]]
End If
```

For...Next

For counter = start To end [Step step] [statements] [Exit For] [statements] Next

Do...Loop

Do [{While | Until} condition] [statements] [Exit Do] [statements] Loop

Or, you can use this equally valid syntax:

Do [statements] [Exit Do] [statements] Loop [{While | Until} condition]

While...Wend

While condition [statements] Wend The tail-part of an histogram distribution reflects the random jitter (RJ) process. Physically, random jitter is due to the random motion of particles within a device or transmission medium. The random velocity of these particles in an equilibrium state is best described as a Gaussian distribution. Therefore, RJ is naturally modeled by a Gaussian function. Since multi-temperature particle distribution is possible, a multi-Gaussian distribution function may be needed to model certain RJ processes.

Based on their definitions, deterministic jitter (DJ) is bounded and random jitter (RJ) is un-bounded. The measured total jitter histogram represents the scaled-up, total jitter probability distribution function (PDF). On the other hand, the convolution of RJ PDF with DJ PDF gives the total PDF, if DJ and RJ processes are independent. In most cases, such an assumption is valid. Therefore the tail part of the distribution is mostly determined by the J, which, in general, has a Gaussian-type distribution. The random noise can be quantified by the standard deviation (or 1 s rms value) of the Gaussian distribution. Depending on the error coverage range, the total RJ can be a multiple of the s, determined from the Gaussian distribution.

In the absence of DJ, a histogram of the jitter should roughly be a Gaussian distribution. Under this condition, there is only one peak in the distribution that corresponds to zero DJ. The rms RJ is the s value. When both DJ and RJ are present, the measured jitter distribution will be broadened and non-Gaussian as a whole. On the other hand, both ends of the distribution should retain Gaussian-type components. These tail component distributions can be used to determine the RJ number. Because of the DJ, the mean of each tail is no longer the same and multi-peaks can be present in the histogram.

If there is no bias or statistical sampling noise in the measurement, the two tails, which represent the random process, should be symmetrical. Since it is not possible to completely randomize measurements and reduce the sampling noise to zero, the s values for the far left and right Gaussian tails may not be the same. The total RJ value should be the average of these two.

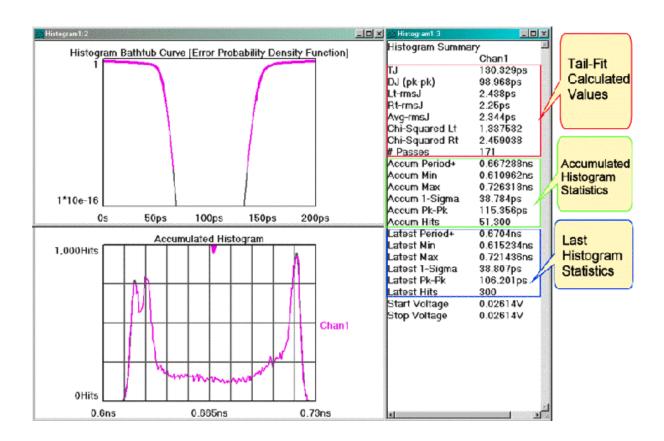
A fitting algorithm that weights the data record based on the quality of each datum should be used. The bigger the error, the smaller role it should play in minimizing the difference between the model's expected and measured values. Thus, goodness-of-fit is used as a gauge to determine how "good" the fit is. The fitting function is Gaussian and the fitting algorithm is nonlinear so it can handle both linear and non-linear fitting functions.

The modified least-square fitting is an iterating process, in contrast to linear equation solving in the case of linear leastsquared fitting. The final answer is obtained when the iteration converges. For this reason, initial values of the fitting parameters are needed.

When a tail-fit is successfully completed, the calculated tail-fits are plotted on top of the raw histogram and values for the Deterministic Jitter, Random Jitter, Chi-square goodness of fit and Total Jitter are displayed. You can also view the resulting Bathtub Plot that is based on the PDF of the raw histogram with extrapolated tails calculated from the tail-fit. The Total Jitter is extracted directly from the Bathtub Plot. See the following Tailfit Enabled section.

Note: For Histogram Tool only - The Total Jitter Specification (in Time) that is used for this calculation is User Defined, make sure that reasonable values are assigned for this as well as the Bit Error Probability. For dataCOM Tools, the Total Jitter Specification is Fixed at 1 UI. The user may still choose the Bit Error Probability at which the TJ is read. Refer to Technical Bulletin TB 9 "A New Method for RJ/DJ Separation"

With Tailfit[™] Enabled


Accumulated view shows the Gaussian curves fitted to the left and right tails.

This Example shows three views from a histogram with Tail-Fit enabled:

The top, Bathtub curve shows where the TJ is calculated.

The right, Summary view shows the values for goodness-of-fits (Chi-squared), extracted DJ and fitted rmsJ. The rmsJ values are smaller than the 1-sigma for the histogram.

The bottom, Accumulated Histogram View shows the Gaussian curves fitted to the left and right tails.

CALIBRATION OPTIONS

The Calibration selection is used to access the instrument's calibration options and has a separate button for each calibration option. The instrument firmware version is used by *GigaView* to determine which features the instruments can support and is displayed at the top of the dialog window.

Make sure matched cables are used in all calibrations.

There are 5 distinct user calibrations that need to be performed in order (three are optional):

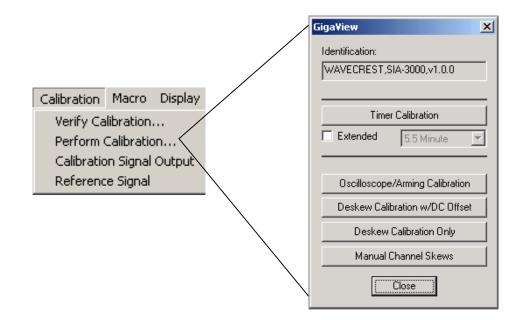
- Timer Calibration Affects RJ noise floor, relative accuracy of all time measurements.
- Oscilloscope/Arming Calibration Oscilloscope delay settings, Arm Delay settings. Always perform this calibration *after* the Timer Calibration. Additionally, if "Deskew Calibration w/DC Offset" fails, you should run this step prior to Deskew.
- Deskew Calibration with DC Offset Absolute measured values, internal channel skews, channel-to-channel skew and DC voltage offset.
- Deskew Calibration only (Do not perform if Deskew Calibration with DC Offset has been performed) Absolute measured values, internal channel skews and channel-to-channel skew.
- Manual Channel Skews Channel-to-channel skew.

VERIFY CALIBRATION

This verification does NOT change any calibration values, it only checks them and suggests whether or not a calibration should be performed. As the next step after verification, a calibration may need to be performed.

After selecting verify calibration, a pop up menu will appear. Press Begin and another menu will appear with directions to follow for verification. Using the *WAVECREST* supplied matched length SMA cable pair, connect between the calibration outputs and the channel input specified in the pop-up window. A new window will pop-up for each channel in the system. You will have to move the cables to the next channel following the on screen instructions. Pressing Skip will not test that channel and will advance to the next channel.

After completion of the verification, the results window will display pass/fail results and values for the simple tests that were performed. If any channel fails, calibration is recommended. Or, if the values shown are higher than the values you expect to see in your measurements, you may want to continue with calibration. The verification measures the SIA 900MHz calibration output using the Histogram and High Frequency Modulation tools. It checks the 1-sigma and mean of a period histogram and looks at the magnitude of periodic components from an FFT. A calibration is recommended and a note will appear in the Results window if the 1-sigma or any single accumulated frequency component is greater than 3ps or the absolute mean is +-30ps from its expected value.


Passing values do not necessarily reflect actual SIA noise floors. These values only reflect the measurement of the calibration signal. If the values pass, it is still possible that a calibration will improve accuracy or noise floors. The verification just ensures that the instrument will meet basic specifications.

In some cases, this calibration verification may be too simplistic with coarse values. If a more thorough verification is desired, check with Wavecrest for additional procedures.

Press Close when finished with calibration verification and continue with the appropriate calibration procedure below if any channel does not pass verification.

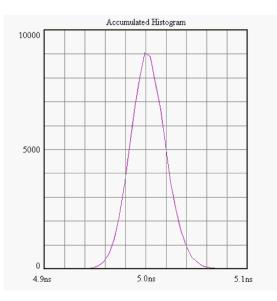
PERFORMING CALIBRATIONS

• Click on Perform Calibration... to access the Calibration dialog box.

• Select appropriate calibration option.

TIMER CALIBRATION - This calibration mode affects all other calibrations and should be performed first.

The Timer calibration characterizes the internal ramps that provide the fine accuracy and resolution for time measurements. The calibration data is stored in the instrument and used each time a measurement is taken. This calibration should be performed whenever the SIA has been off for a long period of time or if it is moved to a significantly different operating environment (>5°C). Users should allow a for 30 minute warm-up period prior to performing any calibrations or testing. Internal calibration takes 5.5 minutes. Longer calibrations will lower the noise floor of the SIA. The "Extended" check box will allow the user to select increased time periods for the Timer Calibration. A pull-down menu to the right of the Extended check box selects the length of the calibration.


Note: performing a short length cal immediately after a longer cal will result in the loss of the earlier cal as the entire contents of the internal tables is replaced with each cal.

No front panel connections are necessary for the Timer Calibration. The elapsed time is shown in the Status Bar on the lower right of the screen.

A QUICK TEST TO CHECK TIMER CALIBRATION

The GigaView software can be used to check the calibration.

- Connect the calibration signals to the channel you want to check. (Make sure the 'Normal Calibration Output State' in the Calibration menu is set to '900MHz sine Out of Phase'.)
- Open the Histogram tool. Press Pulse Find [≤] and GO (Make sure that the measurement is set to 'Period'.)
- The Histogram should be comparable to the figure below.

THE TIMER CAL IS GOOD IF:

- Pk-Pk is about 25ps or less
- 1-sigma is about 2.5ps or less.

OSCILLOSCOPE/ARMING CALIBRATION (AMPLITUDE AND TIMING ENGINE CAL)

This calibrates the Oscilloscope function and the Arming Circuitry. Always perform this calibration after the Timer Calibration. Additionally, if "Deskew Calibration w/DC Offset" fails, you should run this step prior to Deskew.

This step affects these measured values:

- Arm Delay settings, may reduce ambiguous measurements
- Oscilloscope delay settings, will remove 'steps' in scope view

Time required for this step

• Approximately 2 minutes

Additional equipment required

- None
- Ensure nothing is connected to the channel inputs.

Giga¥iew	X
⚠	Ensure nothing is connected to any inputs
	Cancel

DESKEW CALIBRATION WITH DC OFFSET

The Deskew Calibration with DC Offset calibration compensates for DC offsets and then automatically performs a "Deskew Calibration". This calibration ensures less than 10ps skew between all channels at the input connectors. This does not calibrate to the end of the cables used, only internal paths. Upon completion of this step, you may close the calibration dialog box and resume using the SIA; it is not necessary to continue with further calibrations. The SIA is now ready to make measurements.

A QUICK TEST TO CHECK DESKEW WITH DC CALIBRATION

The GigaView software can be used to check the calibration.

- Connect the calibration signals to the channel you want to check. (Make sure the 'Normal Calibration Output State' in the Calibration menu is set to '900MHz sine Out of Phase'.)
- Select the Histogram tool.
- In the top toolbar press the Pulse Find button **S**. Observe the Pulse Find Box (See figure below).

Voltages		×
	Chan1	
Maximum	3.9961	
Threshold(s)	0.0000	
Minimum	-3.9961	
Pk-Pk	7.9922	

The Minimum, Maximum and Threshold voltage values will be displayed for the channels that the user has selected.

DESKEW WITH DC CAL IS GOOD IF:

The Threshold(s) voltage is $0.000V \pm 10mv$.

DESKEW CALIBRATION

This calibration only deskews between channels and internal signal paths to the channel input connectors. This is an optional calibration. This does not calibrate to the end of the cables used. The DC offset calibration is not performed.

You do not need to perform this calibration if you have already performed "Deskew Calibration with DC Offset".

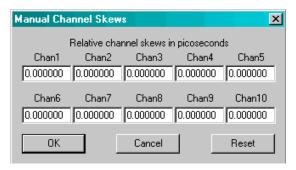
- Select "Deskew Calibration".
- A dialog window appears informing the user to connect the calibration cables (use provided matched cables).
- Follow the onscreen instructions to complete the calibration.
- Note polarity of connections, as this will change as you proceed through the calibration.

A QUICK TEST TO CHECK DESKEW CALIBRATION

The *GigaView* software can be used to check the calibration.

The deskew calibration has two parts. The first part is the internal channel Deskew Calibration that deskews a channel path. To check this calibration, do the following.

- Connect the calibration signals to the channel you want to check. (Make sure the 'Normal Calibration Output State' in the Calibration menu is set to '900MHz sine Out of Phase'.)
- Open the Histogram tool. Press Pulse Find [≤] and GO [▶] (Make sure that the measurement is set to 'Period'.)
- The Histogram should be comparable to the figure below.
- If the Period is 1.111ns ± 10 ps the Deskew cal is good.


The second part of the deskew cal is the channel-to-channel skew. To check this, do the following.

- Connect the top calibration signal to the top input of channel1 and the bottom calibration input to the top of channel 2. (Make sure the 'Normal Calibration Output State' in the Calibration menu is set to '900MHz sine In Phase'.)
- Open the 'Multichannel | Propagation Delay and Skew' tool. Press Pulse Find and GO
 (make sure that the measurement is set to 'Period')
- The Histogram should be comparable to the above figure.
- If the skew is $0ps \pm 30ps$ the Deskew cal is good.

Repeat this for any channels that you want to measure between.

MANUAL CHANNEL SKEWS

This step is optional, it allows fixed time offsets to be added to or subtracted from a channel when a Channel-to-Channel measurement is made. This can be used to compensate for different cable delays between channels. This will affect all channel-to-channel measurements or any measurement such as DataBus, Random Data w/ Bit Clock or any measurement using one channel as a "reference". To clear these values, press "Reset". The values will also reset to zero if the instrument is powered down.

Manual Channel Skew Setup

Only enter values here if the delay differences between channels are known. When using differential inputs, the cables connected to each pair of channel inputs must be a matched set. The values entered are relative to one of the channels; one value will always be left at 0.0000.

- Select "Manual Channel Skews".
- A dialog window appears allowing the user to enter relative channel skews. Enter values in picoseconds.

In the figure to the right, example values are shown. The values that are input are the differences between channels, not the absolute electrical length of a cable on that channel.

For instance, Channel 1 cable is 2.80ns. Channel 2 cable is 2.8205ns. So the value entered in "Channel 2" is the difference, 20.5 ps. Note: in this example, Channel 5 is 14ps shorter than Channel 1.

The SIA is now ready to make measurements.

Manual Cha	annel Skew	s		×
Relative channel skews in picoseconds				
Chan1	Chan2	Chan3	Chan4	Chan5
0.000000	20.500000	17.000000	5.600000	-14.00000
Chan6	Chan7	Chan8	Chan9	Chan10
0.000000	0.000000	0.000000	0.000000	0.000000
(OK		Cancel		Reset

APPENDIX D - SIA SPECIFICATIONS AND MAINTENANCE

MAINFRAME SPECIFICATIONS

CHANNEL CARD OPTIONS	2, 5 and 10. Visit our website at wavecrest.com for current channel card specifications.
HARDWARE RESOLUTION	200 fs
INTERNAL TIMEBASE REFERENCE	
Frequency	10 MHz
Aging/year (after 24 hrs on)	1.5×10^{-7}
Aging/day (after 24 hrs on)	1×10^{-9}
Aging/sec short term (after 1 hr on)	5×10^{-11}
Accuracy	1×10^{-6}
INTERNAL CALIBRATION SOURCE	
Frequency	900.108 MHz ±60 ppm
Amplitude	
DISPLAY	Color TFT-LCD, 10.4" diagonal, 1024 × 768 pixels
EXTERNAL INPUTS AND OUTPUTS	3 USB ports (2 on front, 1 on back panel) GPIB 10/100BaseT Ethernet Parallel Port, 25 pin D-sub RS-232, 9 pin D-sub VGA, 15 pin D-sub
DATA STORAGE	10 Gb (minimum) internal hard drive.

GENERAL SPECIFICATIONS

POWER REQUIREMENTS

Voltage	100-120 VAC ± 10%, 200-240 VAC ± 10%
Frequency	-
Power	800 Watts for a five-channel system

ENVIRONMENTAL REQUIREMENTS

Operating Temperature Range Temperature range for Calibration Humidity Over Voltage Installation Category Pollution Degree	Cal temp ±5°C 10-85% R.H. (non-condensing) CATII
DIMENSIONS	23.25"L × 17"W × 8.7"H 19" rack mountable
WEIGHT	42 lbs

MAINTENANCE

VENTILATION

To provide adequate ventilation for the SIA, a minimum of 2-3 inches of unobstructed airflow in the back sand sides must be maintained. To maintain the highest accuracy, the air intake should not be near sources that would cause ambient temperature fluctuations. Temperature fluctuations greater than 5°C would require the instrument to be re-calibrated.

MAINTAINING PROPER INSTRUMENT GROUNDING

Both 110VAC and 230VAC power sources require an earth ground at the power connection. Failure to provide this safety ground could result in improper measurements and/or electrical shock danger to the operator.

Only qualified service personnel should perform maintenance procedures on the SIA. When maintenance is performed, NO protective earth ground connections should be removed.

- NOTE: Where this product is installed at areas requiring main power connections other than the three-pronged North American power plug, the main power cord must be replaced with the cord and plug appropriate to the location. The main supply cord must be rated to meet or exceed the current rating on the IEC connector (10 amps) and must meet the requirements of H05VV power cords in IEC 227 or IEC 245. If the appropriate power cord cannot be obtained locally, contact the *WAVECREST* CORPORATION factory and one will be provided. The IEC plug on the AC power cord acts as the safety disconnect to the product. Whenever possible, always install the SIA so that easy access is provided to the safety disconnect.
- NOTE: The power supply fan will automatically start when power is supplied to the instrument. The fan will remain on until power is removed.

FUSE REPLACEMENT

The IEC plug-in at the back of the SIA provides the input connection for the AC power cord. A small compartment on the IEC plug houses two Wickmann 10AT/230V fuses (5x20mm).

To gain access to the fuses, remove the power to the SIA and disconnect the power cord. With a small screwdriver, pry open the fuse compartment on the IEC plug. Remove the fuses and install the new fuses prior to closing the compartment and reinstalling the power cord.

CLEANING INSTRUCTIONS

Periodic cleaning may be required. Use a clean, lint free cloth to dust outer surfaces after electrical power has been removed. If needed, dampen cloth with light amounts of water or alcohol.

INTENDED USE OF EQUIPMENT

The SIA should be used only for its intended purpose as outlined in this manual. To avoid possible injury, the instrument should not be operated with the top cover or other panels removed. Refer installation and maintenance to qualified service personnel.

CAUTION: The internal CPU assembly contains a lithium battery. Danger of explosion exists if battery is incorrectly replaced. Replace only with the same or equivalent type recommended by the manufacturer. Discard used batteries according to the manufacturer's instructions.

VORSICHT: Explosionsgefahr bei unsachgemäßem Austausch der Batterie. Ersatz nur durch denselben oder einen vom Hersteller empfohlenen gleichwertigen Typ. Entsorgung gebrauchter Batterien nach Angaben des Herstellers.

ATTENTION: IL Y A DANGER D'EXPLOSION S'IL Y A REMPLACEMENT INCORRECT DE LA BATTERIE. REMPLACER UNIQUEMENT AVEC UNE BATTERIE CU MĚME TYPE OU D'UN TYPE RECOMMANDÉ PAR LE CONSTRUCTEUR. METTRE AU RÉBUT LES BATTERIES USAGEES CONFORMÉNENT AUX INSTRUMCTIONS DU FABRICANT.

To avoid explosion, do not operate the SIA in or near an atmosphere of explosive gases.

This equipment is to be connected to supply mains using the power cord provided with the product. Transient over voltages are to be less than the limits defined by installation category II, Annex J of EN61010-1.

THIS PAGE INTENTIONALLY LEFT BLANK.

The clock recovery option enables signal integrity compliance and diagnostics measurements when access to a bit clock is not available. The clock recovery option also removes the need for awkward setups to obtain accurate and repeatable compliant signal integrity measurements - simply plug in your test signal to make eye diagram and jitter measurements.

Setup:

The data from the DUT is sent into the Clock recovery Data In. The supplied Hard-line SMA's are used to connect from the Clock Recovery Data Out to the IN1 (Channel 1 input). The recovered clock is used internally for all signal integrity measurements.

Specifications:	Continuous Rate	Single Rate
Clock recovery data rate	30 Mb/s to 3.0 Gb/s	2.5 Gb/s ±2%
Clock recovery PLL bandwidth	Databaud/1244 Typical	2 MHz max (1.1 MHz Typical)
Clock jitter ¹ Databaud < 500 Mb/s Databaud > 500Mb/s	< 5.0ps RMS	< 2.0 ps rms (1.75 ps Typical)
Insertion Loss Through Path	8 dB Typical	6 dB Typical
Operating Input Signal Level Single Ended: Differential:		

¹Measured using PRBS 2^23-1 test pattern.

Applications

Fibre Channel (1x, 2x, 3x), SAS & SATA (1.5 & 3.0), Gigabit Ethernet, PCI Express, Infiniband, SONET OC-3,12,48, XAUI, 10GFC, Serial RapidIO, DVI, 1394b (800Mb/s & 1.6Gb/s), Fast Ethernet, HDMI, Custom (30 to 3000 Mb/s).

Contact WAVECREST CORPORATION for more information regarding the Clock Recovery Option.

This page intentionally left blank.

Remote *GigaView* software provides one of the most comprehensive jitter analysis software packages on the market today. The Windows[®]-based GUI, Getting Started Wizard and online help will enable new users to confidently acquire useful data in seconds. Even inexperienced users will be capable of making measurements of accumulated jitter, low and high frequency modulation and frequency locktime enabling them to characterize and fully understand the performance of their clock signal. Furthermore, the addition of macros allows users to perform routine tasks at the click of a button.

SYSTEM REQUIREMENTS

This version of the Remote *GigaView* software operates on a personal computer running Microsoft[®] Windows[™] 95, 98, 2000, XP or NT 4.0, LINUX 7.2 or above, as well as SUN/Solaris[®] and Hewlett-Packard[®] Workstations.

HARDWARE REQUIREMENTS

Windows 95/98/2000/NT 4.0/XP

- Minimum extended memory: 32 megabytes for Windows 95/98
 - 48 megabytes for Windows 2000/XP/NT 4.0
- VGA Monitor
- Video Graphics card with minimum of 256 colors and minimum display area of 1024x768 pixels
- National Instruments GPIB card: PCI-GPIB recommended, PCMCIA or AT-GPIB
- Hard drive with 8 megabytes of unused space
- Printer is configured through Windows printer Setup feature

SUN/Solaris

- SPARC Workstation
- National Instruments GPIB Interface Card: a) (GPIB-SPRC B) or

b) external (GPIB/SCSI-A) interface box

Hewlett-Packard

- Hewlett–Packard 9000, Model 715 and above
- National Instruments GPIB Interface Card: a) EISA-GPIB for HP-UX or

b) GPIB-SCSI-A Controller

• HP E2070 Card (ISA HP-IB Interface Card)

or,

HP E2071I Card (ISA/EISA High Speed HP-IB Interface Card).

LINUX 7.2 and above

- Minimum CPU Requirements Pentium class. Recommended 200MHZ Pentium class
- Minimum extended memory: 96 megabytes recommended
- VGA Monitor
- Video Graphics card with minimum of 256 colors and minimum display area of 1024x768 pixels
- National Instruments GPIB Interface card: PCI-GPIB recommended
- 2.5 GB Hard drive recommended; 4.5 GB hard drive for full installation

SOFTWARE REQUIREMENTS

Windows 95/98/2000/NT 4.0/XP

- MS Windows 95, 98, 2000, XP or NT 4.0 Operating Systems
- National Instruments GPIB driver to match GPIB card used (see Hardware Requirements)

SUN/Solaris

- Solaris version 1.x (SunOS 4.1.x), or
- Solaris version 2.x (SunOS 5.x), and
- National Instruments GPIB driver: NI-488.2M

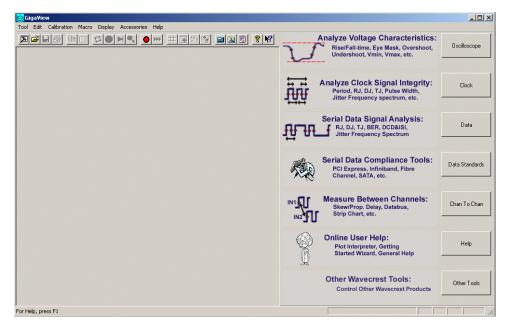
Hewlett Packard

- HP 9000 O/S 10.x and above
- National Instruments GPIB driver: a) NI-488.2M for HP-UX
 - b) No driver software is required for the SCSI-A Controller
- HP E2091 HP I/O Libraries for HP 9000 series 700.

LINUX

- RedHat 7.2 or above
- National Instruments GPIB driver to match GPIB card used (see Hardware Requirements)

Remote GigaView[™] INSTALLATION


Windows[™] 95/98/2000 /NT 4.0/XP

If a previous version of Remote *GigaView* has been installed, backup copies of existing files should be made or a different installation directory should be chosen during Step 4 below.

To install Remote GigaView:

- 1. Insert Remote *GigaView* CD into the CDROM drive.
- 2. Wait for Autostart program to run setup program. If Autostart does not start the installation program, click the **Start** button and then click **Run**.
- 3. Type **D:\setup** (or appropriate drive letter) and select **OK**.
- 4. Follow the instructions on the screen to complete the installation.

Setup will create a *GigaView* program folder in the **Programs** menu. To run the Remote *GigaView* program, click the **Start** button, point to **Programs** and click on *GigaView*. The **Main Window** (see figure below).

To uninstall Remote *GigaView* (Save any wanted data in another directory before uninstalling Remote *GigaView*):

- 1. Click on the Start button, then on Settings and finally on Control Panel.
- 2. Double click on the Add/Remove Programs icon in the Control Panel.
- 3. Locate the Remote *GigaView* program in the list and click on the **Add/Remove** button.

UNIX

Although it is not mandatory, it is recommended that root user perform the Remote *GigaView* installation. If root user is unavailable, write permissions to the installation directory are needed. A symbolic link is created by the root user in the /bin directory in order to provide universal access to the program.

To install Remote *GigaView*:

- 1. Mount the CDROM using the applicable method for your workstation.
- 2. Issue the following command for SUN/Solaris:

```
/<cdrom_loadpoint>/setup.sun
```

```
or for HP-UX 10.2 issue,
```

/<cdrom_loadpoint>/setup.hp

```
or for HP-UX 11i issue,
```

/<cdrom_loadpoint>/setup.hpi

or for Linux 7.2 or above

/<cdrom_loadpoint>/setup.lnx

replacing <cdrom_loadpoint> with the applicable path for your workstation.

3. Follow the prompts to install the required files.

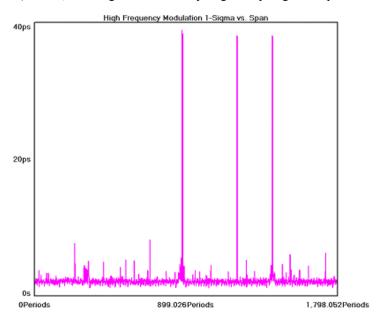
If you did not install the files as root user, a symbolic link to the /bin directory by someone with root access should be entered as directed by the installation program.

- 4. CShell users should now issue the rehash command in order to refresh the path.
- 5. To install the license codes, issue the command:

visi -license

and enter supplied license codes.

6. To configure the macro language interface, issue the command:


```
visi -macrocfg
```

7. The installation is now complete. Launch the program by issuing the command: visi

If your *WAVECREST* instrument is not configured as GPIB device 5, you will need to replace the default by selecting Edit; Configuration; and replacing the name with the applicable device.

For more information regarding Remote *GigaView* installation and remote automation, contact *WAVECREST CORPORATION* at (952) 646-0111 or email TechSupport@wavecrest.com.

- +/- 0.5 UI Filter Available when a pattern marker is being used and Quick-mode is not enabled. Eliminates stray errors due to insertion of extra IDLE characters compensating for device re-clocking that disrupts standard Fibre Channel test patterns. Filters are automatically calculated and applied to throw away any measurements that are more then +/- 0.5 UI away from their expected positions. If more than 5% of the edges are filtered, an error will be reported.
- # of Averages Selects the number of averages for each sampled point displayed on the screen.
- **1, 2, 3, 4 command (Tool menu)** Use the numbers and filenames listed at the bottom of the Tool menu to open the last four tools used. Choose the number/name that corresponds with the tool to re-open.
- **1-sigma** The standard deviation of jitter. For a pure Gaussian distribution, the standard deviation value is 1/14 of the peak-to-peak value for BER 10⁻¹².
- **1-sigma Arm Violation** An example of an arm violation of the 1-sigma plot looks like the figure below. As the 1-sigma plot is being generated, one of the histograms actually has 2 histograms (see Clock Histogram Arm Violation). Thus, the 1-sigma value is very large and you get the spikes shown.

- a2 Coefficient Radian frequency tracking parameter, having a dimension of radian frequency or phase speed.
- **a3** Coefficient Radian frequency speed tracking parameter, having a dimension of radian frequency or phase acceleration.
- About command (Help menu) Click on this command to display the copyright notice and version number of your copy of *GigiView* software.
- Acquire Electrical Idle Values When this button is pressed, the signal being transmitted to the SIA-3000 must be the Electrical Idle state of a transmitter. The SIA-3000 will then measure the parts of the common mode measurements in the PCI Express specifications that are required to be performed in the electrical idle state. In the Electrical Idle State, both differential lines of a PCI Express link are driven to their common mode level.
- Acquire Time (s) Changes the amount of time data is acquired while in each histogram window. A setting of 10 seconds would change the data acquisition for the right and left histogram to 10 seconds each. A larger Acquire Time generally reduces the overall test time because the acquire time is the time in which data is obtained for the TailFit process. A larger Acquire Time increases the percentage of time used for the TailFit process.

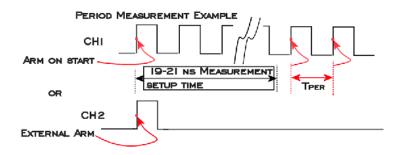
Active check box - Checking this box will activate the highlighted Optical Input line.

Add/Delate Channel Clicking on Add/DelChannel button will display a	Add/Del Channel
Add/Delete Channel - Clicking on button will display a selection box for adding or deleting channels.	Use Numeric Keypad to toggle channels - ENTER to close
Use the keypad to select one or more channels to measure.	▼1 □2 □3
Buttons will toggle channel on or off. Click on Enter when done.	
	□7 □8 □9
Add command (View menu) - Adding a view opens a new (default)	🗖 10 🗖 CDR
tool window associated with the active tool. There may be many opened window views of one tool, but all views reflect any measurements or settings for that tool.	Enter

To see both a measurement plot and summary page, open a tool, select Add from the View pull-down menu or click on the New View button (see below), select Summary from the View menu on the Dialog Bar.

- New View button performs the same function as the Add command.

- Add Device Select the "Add Device" button to add an optical device to the remote device list and establish the OE-2 address for the device.
- Add this Plot Button Clicking on button will add the selected plot.
- AG-100 Mode Select either Pattern Match or Edge Count. In Pattern Match mode, the AG-100 will generate a Pattern Marker by matching to a unique 40-bit sequence of the pattern. In Edge Count mode, the AG-100 will generate a *pattern marker* upon repetition of a user-specified number of positive or negative edges.
- All Outputs Enables/disables outputs of DTS-550[™]. Default is Off. In order to receive any type of output signals from the unit, the All Outputs control needs to be set to On and the Synthesizer control needs to be set to On.
- Allen Variance The Allan Variance is a measure of frequency stability. It is a non-dimensional factor giving the variance of the signal frequency over a given period of time. To correctly measure the Allan Variance, *GigiView* should be in repeat cycling mode and have the time delay set to a specific interval. The value presented in *GigiView* is the Allan Variance proper and not the Root Allan Variance. The Allan Variance is typically done over one second periods. The frequency is measured each second and compared to the frequency of the previous second. The discrete frequency change is then divided by the nominal (first sample) frequency before being included in a variance calculation. The resultant number is not based on the input frequency, thus allowing quality comparisons between signals of differing frequencies.


The Allan Variance is calculated from two data sources: the samples still residing in the strip chart (the last 500) and also from all measurements taken. As with computing the overall average, a two-stage algorithm is used with the first 5000 samples used explicitly and subsequent samples being incorporated with an exponential decay technique.

- Alpha Factor The varying of the Alpha Factor illustrates the inverse proportionality relationship between the spectral peak width and the sidelobe rejection of the Kaiser-Bessel window. As the Alpha Factor increases, the spectral peak widens and the sidelobes shrink. As the Alpha Factor decreases, the spectral peak narrows and the sidelobes increase in amplitude.
- **Amplifier (dB)** Choose the gain of the electrical amplifiers that follow the optical to electrical converter. This allows you to increase electrical output signal strength.
- Annotation command (Edit menu) Allows user to add or modify a text annotation on the summary page of the current tool. This text will be displayed, saved and printed with the summary page. Also, right clicking on the summary view will open the annotation editor.

Apply - Implement changes/parameters indicated.

Arm1 Edge - DTS compatibility mode. Select rising or falling edge for Arm1.

- Arm2 Gating DTS compatibility mode. Enables/disables Arm2 input as a gating input. With Arm2 Gating **On**, the trip voltage set by Arm2 Gating Voltage is used. Rising sets gating high and falling sets gating low.
- Arming The SIA-3000[™] is not a triggered instrument in the sense that measurements are made based on a trigger. Rather the Arm provides a "get ready" signal to prepare the measurement channel to make a time measurement. Jitter on the arm will not transfer to jitter on the measurement. See also Auto Arming and External Arming. See Application Note #115 in the online documentation under the <u>H</u>elp pull-down menu on the Menu Bar.
- Arming Delay (19-21ns) The arm delay sets the minimum time from an arm event to the first measurement edge. As the diagram below shows, there is a user selectable 19 to 21 ns delay from the Arm event to the first measurement.

NOTE: See also 1-Sigma Arm Violations, Clock Histogram Arm Violations, DataBus Arm Violations and Known Pattern with Marker Arm Violations

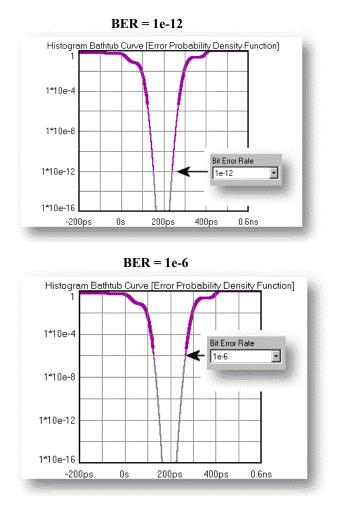
- Arming Edge Select the rising or falling edge for triggering. This will select which edge types from the Arm Channel will be used to arm a measurement on the Measurement Channel.
- Arming Mode Select specific arming input, automatic arming (arming from input signal) or external arming (arming from ARM1 or ARM2 inputs). For Locktime and Known Pattern with Marker tools, external arming is automatically selected with the Arm1 and Arm2 selections displayed. See also External Arm, Arm on Start and Arm on Stop.

Arm Number - The Arm channel is enabled when External Arm is selected from Arming Mode. Use the keypad to select one channel to be used to arm the measurement. Select an Arming Edge (rising or falling).	Use Numeric Keypad to toggle channels - ENTER to close 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9
Arm on Start - Arm the instrument for the first start event.	O 10
Arm on Stop - Arm the instrument for the first stop event.	Pattern Marker Enter

Arm Voltage - This is the voltage threshold used to Arm the chosen measurement. This value is derived from Pulsefind when Threshold Voltage is in AUTO. If Threshold Voltage is in USER VOLTS, you can enter a fixed value to be used. In USER VOLTS, Pulsefind will have no effect on the threshold voltages.

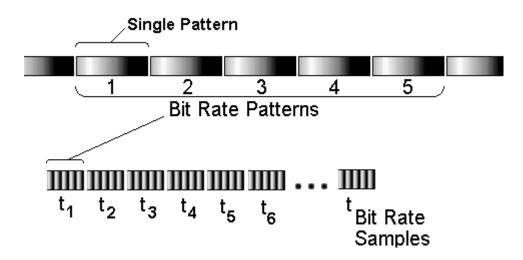
Attenuation Factor - The amount the input signal that is attenuated by a probe. The range is from 1 - 100.

Attenuation in dB - Enter the value in dB, of which you are attenuating the input signal. The range is from 0 - 40dB.


Auto Arming - The SIA-3000 is not a triggered instrument in the sense that measurements are made based on a trigger. Rather the Arm provides a "get ready" signal to prepare the measurement channel to make a time measurement. Jitter on the arm will not transfer to jitter on the measurement. See also External Arming.

Auto Scale - Analyzes the waveform and automatically configures the Delay, Range, and Resolution to display the waveform.

Average Power Limit - Pass-Fail limit value. This will be automatically se to the standard limit in each protocol if a protocol has been selected.


Back - Return to previous Dialog bar page or Getting Started Wizard page.

- **Bandwidth Enhanced** Selecting "Bandwidth Enhanced" by checking the box in the Global Tool Settings dialog box applies DSP to the measurement results enhancing the analog bandwidth to 10GHz. The waveform must be periodic such as a clock or repeating pattern. It applies to the waveform shown in all tools using the oscilloscope other than SATAII Hardware Clock Recovery and InfiniBand. It cannot be applied to the eye diagram triggered from a bit clock, to view a BW enhanced eye mask, use the "Folded Eye Tool". An indicator in the status bar at the bottom of the main GigaView window shows whether Bandwidth Enhanced is on "BWE: On" or off "BWE: Off."
- **Bit Error Rate** Determines the Bit Error Rate to be used when extracting total jitter from the Bathtub Curve. The default value is 1e-12. This setting has a direct effect on the TJ value that is calculated. For example, TJ at 1e-6 will be lower (smaller) than TJ at 1e-12 (see figures below).

Bit Rate - The average data rate of the signal, entered in Gigabits per second. An accurate Bit Rate is crucial as it is used in the calculation of the various jitter components. The default is 1.0625 Gbit/s, which is the standard 1x Fibre Channel speed. Because the pattern and total number of UI is known, the Bit Rate that is reported is an average value derived from the total time across a number of patterns (defined by Bit Rate Patterns) divided by the total number of UI contained in that many patterns.

Bit Rate Patterns - Determines the number of patterns over which a single time measurement is made.

Because the pattern and total number of UI is known, the Bit Rate that is reported is an average value derived from the total time across a number of patterns (defined by Bit Rate Patterns) divided by the total number of UI contained in that many patterns.

- **Bit Rate Samples** Determines the total number of time samples acquired for the single time measurement. Because the pattern and total number of UI is known, the Bit Rate that is reported is an average value derived from the total time across a number of patterns (defined by Bit Rate Patterns) divided by the total number of UI contained in that many patterns.
- **Bit Rate Standard Error** Indicates when suspect measurements have been taken, usually as a result of improper pattern selection. Default is 0.5 UI. Any measurements deviating from the ideal by more than this value will produce an error message and the test will stop. This value may need to be increased if the signal has more than 0.5 UI of jitter (such as tolerance testing).
- **Bounded Uncorrelated Jitter (BUJ)** Jitter that is uncorrelated to the data signal, yet bounded in amplitude. A typical source might be cross talk from another data signal. See also Deterministic jitter.
- Brickwall Brickwall sets the limits of a filter function. It may be for a high-pass or low-pass filter, depending on RJ + PJ min or RJ + PJ max being configured. No RJ or PJ values below or above the user-selected value will be shown in Summary measurements. When setting RJ + PJ min filter, any value entered must be above the -3dB frequency. The -3dB frequency controls how much information is acquired. The Brickwall filter value is applied after the measurement has been made.
- Calc Initial Conditions Chooses whether to automatically calculate the initial conditions or allow user entry.
- Calculator Clicking on this button accesses the operating system calculator.
- Calibration See Appendix C, SIA-3000[™] Calibration.
- **Calibration... (Options)** The Calibration... selection is used to access the instrument's calibration options and has a separate button for each option. The instrument firmware version is used by *GigiView*[™] to determine which features the instrument can support and is displayed at the top of the dialog window. See **Appendix C** for a complete explanation of all calibration features.
- **Calibration Signal Output** When first turned on, the instrument will not be outputting any calibration signal from the Calibration OUT connectors. To select a signal,
 - Click on the Calibration pull-down menu of the main Menu Bar,
 - Select the Calibration Signal Output option and the output frequency choices will be displayed.
 - Select an output frequency.

Cancel - Closes main dialog bar for choosing GigiView tools and returns to previous dialog bar view.

- **Cascade command (View menu)** Arranges windows so they overlap starting in the upper left-hand corner with the active tool screen being displayed. The title bar of each window tool remains visible allowing easy selection of any window.
- Center Mask Horizontally This button will center the mask horizontally in the view.
- Channel Select any channel for single channel functions. The default is Chan 1 or Ref 1.
- Channel 1 Select from which channel of the DSM, connected to any Channel In of the instrument, to acquire measurements.
- Channel 2 Select from which channel of the DSM, connected to any Channel In of the instrument, to acquire measurements.
- Channel Edge Select Rising or Falling edge for channel-to-channel measurements.
- **Channel Setup Options button** Configure a particular channel (as chosen by Channel View). You can set Delay (time), Offset (voltage), and Volts/division.
- Channels to Optimize Select the data channel(s) for the automatic pattern marker placement.
- **Channel View** Use this pull-down menu to select the channel of the desired signal. This allows you to view measurements from a specific channel as well as change that channel's settings.
- **Channel Voltage** Enter channel voltage trigger level. When Threshold Voltage is set to AUTO, you can use the channel control to view the threshold voltages derived from PULSEFIND to be used by that channel for a measurement. Voltages are displayed under Start Voltage, Stop Voltage and Arm Voltage.

When Threshold Voltage is set to USER VOLTS, use the channel control to select a channel and specify or fix the threshold voltages to be used for the measurement on that channel.

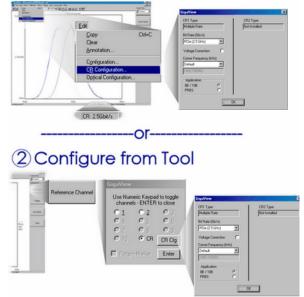
Clear Button - Clears active window of data.

- Clear Command (Edit menu) Clears active tool of any measurements or plots. Toolbar symbol:
- **Clock Histogram Arm Violation** If the arm mode is 'Arm on Stop' or 'Arm on Start' (Auto Arm) then the software automatically picks an edge transition, after its internal delay of 4 to 5µs (See Measurement Theory), on the same signal that it is going to measure as its arm event. If external arm is selected, a transition on another channel (other than the measurement channel) is used as the Arm for a measurement. Then, after the input delay (19 to 21ns), a measurement is made. If the delay value is very close to an edge that is being measured, misalignment can occur when jitter on the signal moves the first edge back and forth across the delay interval. The result will be that the hardware will sometimes see the edge and sometimes it won't.

One example of this situation occurs when a period measurement of a clock is being made and 2 histograms appear, one of negative values and one of positive values. Another example is when measuring data the dataCOM software may give an error "Failed DDJ measure – Bad pattern or Signal". In either of these cases, the Arm Delay can be moved to eliminate this problem.

Clock Recovery Tool Option - The clock recovery option enables signal integrity compliance and diagnostics measurements when access to a bit clock is not available. The clock recovery option also removes the need for awkward setups to obtain accurate and repeatable compliant signal integrity measurements - simply plug in your test signal to make eye diagram and jitter measurements. For more information, see Appendix E or Clock Recovery Configuration Dialog Box.

Clock Recovery Configuration Dialog Box - If your SIA-3000 has the Clock Recovery (CR) option, it will need to be configured for the specific data rate that you wish to measure. The configuration is a global setting and may be accessed from the Edit menu under "CR Configuration". Or, from within the tools that may utilize the CR, you can access the same global configuration setup (See figure to the right).

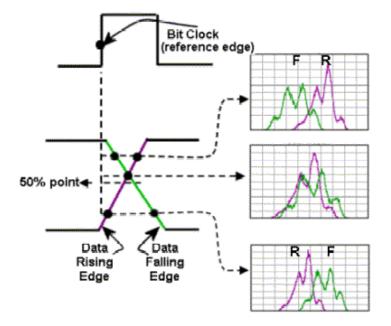

The CR data rate that is set is displayed in the bottom status bar.

The "Voltage Correction" check box will compensate for the hard line SMA jumpers that are installed between CR Out and CH1 In. Therefore, with the box checked, the oscilloscope will display the correct voltages when the jumpers are in place.

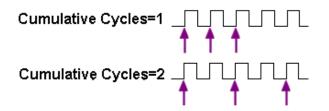
The "Corner Frequency" displays the corner frequency of the clock recovery PLL transfer function. Currently, the only setting is Default. Adjustability will be available in a future software release.

The "Application" radio button selection optimizes the performance of the Multi-rate CR based on the type of pattern under test. Settings for the 8B/10B encoded patterns or other patterns (including PRBS) are included.

CR Configuration is a global setting. ① Configure from Menu

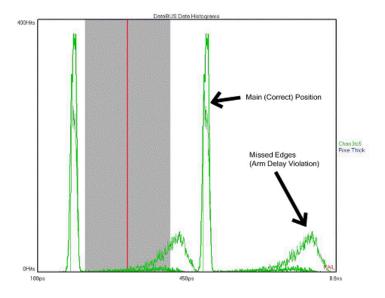

- **Close command (Tool menu)** Use this command to close all views containing the active tool. If you close a tool without saving, you lose all changes made since the last time you saved it.
- **Comma Detect** Select either On or Off. Comma detect On allows the SERDES to align the incoming data precisely on half-word boundaries.
- **Context Sensitive Help** Clicking on the button ()) activates context sensitive help. Once activated, the cursor changes to the Help Topics icon and will remain so until another click of the pointing device occurs. Upon clicking the second time, help text will be displayed.
- **Convergence** Determines the percentage within which consecutive tail-fits must comply in order to insure reasonable frequency coverage from the corner frequency. The default setting is 10%. See TailFit. This setting is only active when "Tailfits" is set to Auto.
- **Copy command (Edit menu)** Use this command to copy the current active view onto the clipboard. This command is unavailable if there is no data currently selected. Copying data to the clipboard replaces the contents previously stored there.
 - Ē
- **Corner Frequency** The Corner Frequency is the Frequency of the Half Power Point (or -3dB Point), so the choice of this frequency will determine the low frequencies visible on the FFT. The Corner Frequency is used to determine the maximum measurement interval to be used in sampling and is entered in kHz. A low corner frequency extends the time required to acquire the measurement set because histograms over many more periods must be acquired. Below the corner frequency, a natural roll-off of approximately 20dB per decade is observed. The default value is 637kHz, a Fibre Channel standard, except for the High Frequency Modulation Tool that is 100kHz. Corner frequency affects how much data is acquired and, therefore, the choice of this value also affects the test time. See the Theory section for High Frequency Modulation.

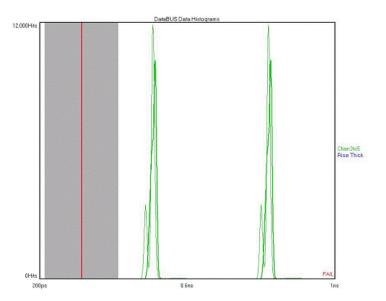
Course Delay - Displays the coarse delay setting in multiples of 800ps for Gigabit Ethernet and 941ps for Fibre Channel.


Course Delay Bypass - Select either On or Off. Selecting On will bypass the coarse delay options. In Edge Count Mode, the coarse delay bypass is automatically placed On.

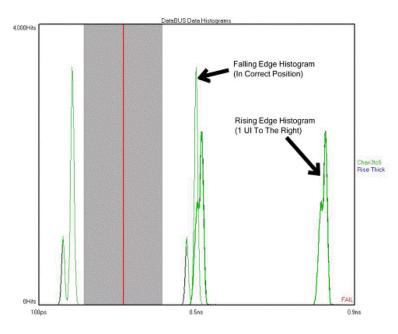
Course Delay Index - Select the number of coarse delays 0-39.

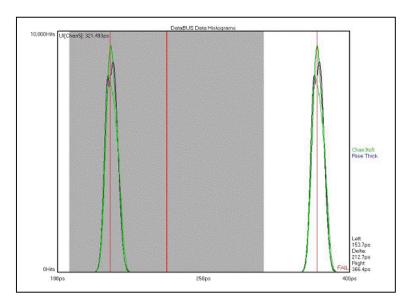
- **Crosspoint Detect** Crosspoint detect normalizes the data rising edge and falling edge histograms relative to the bit clock (see Figure below). Pulsefind (Auto) sets the threshold automatically to the 50% level. Crosspoint detect changes pulsefind to User Volts and automatically varies the threshold until the histograms of rising and falling edges are overlaid.
 - **Note**: Above the 50% threshold, Falling edges precede Rising edge while below it, Rising edges precede falling edges. This is equalizing the time delay between the bit clock and the data rising and data falling edges.

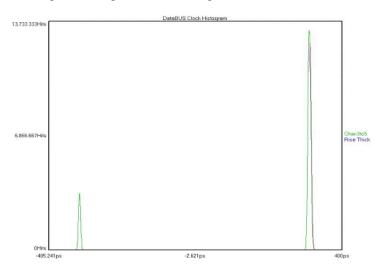

Cumulative Cycles (Adjacent Cycle) - Allows a measurement to be made over more than one consecutive period


- Current Histogram Span When the "Current Hist. Span" View is selected under "Curent View", the Histogram that corresponds to the given span is shown. This selection enables the viewing of a select sampling of Histograms for different spans (1 to 5, 10, 20, 50, 100, 200, and 250).
- **Current View** The Current View pull-down menu provides the user several different ways to see the acquired measurement data, depending on the active tool.
- **Current View Diagnostic Tool** Opens the measurement tool that is currently being used for viewing the requested measurements. Press "Current View Diagnostic Tool" from the view you are in to open that specific tool, make the measurement and have control over a larger number of settings. If viewing the Oscilloscope view, Pressing "Current View Diagnostic Tool" will open the Oscilloscope tool. You now have access to many more configuration settings. If viewing the Histogram view, Pressing "Current View Diagnostic Tool" will open the Histogram tool and allow different settings.

DataBus Arm Violations - There are 4 possible arm violations in this tool. The examples below show cases where the Arm Delay could be set improperly. If you encounter one of these cases, change the 'Arm Delay' and reacquire the measurements.


The first is shown in the following figure. In this case, the histograms have tall, main peaks but, on the right side, the short distributions trail off close to a full UI to the left. This is an arm violation that is caused by the arm plus day falling very close to an edge of the data.


The second example is shown in the following figure. Here you can see that both distributions are on the right side of the mean clock line (shown in red). This occurs when the arm violation is creating a condition where the left most data histogram (see DataBus theory of operation) is the clock-to-data plus one unit interval. This is evident in the summary that would incorrectly report the 'Average Skew' of this data set as the Skew plus 1UI (note that in the example, the offset from the center of the two peaks is an additional UI).

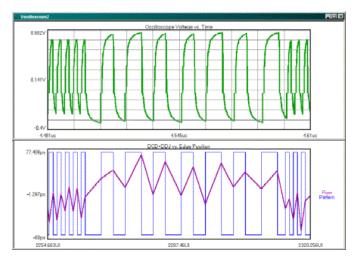

The third example is shown in the following figure and displays a situation where the falling edges are 1 UI away from the rising edges. This occurs when the data has Duty Cycle Distortion (DCD) and the Rising edges are seen but the falling edges aren't.

The last situation occurs when the distance between the Data histograms isn't correct. As you can see in the following figure, the UI should be 321ps (3.125Gbps) but the actual distance is 212ps. The reason for this can be found by examining the clock histogram.

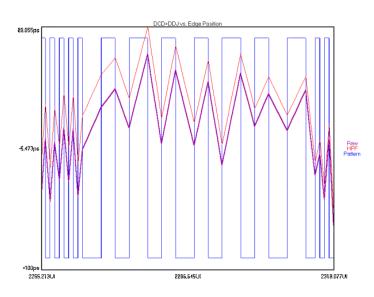
If you change your view to the clock histogram (see figure below) you will see that there is a positive histogram centered at 320ps and a negative one at -320ps.

When this tool measured the clock to get the UI, the mean of these 2 histograms was 212ps (see the summary in Table 1 below). Thus, when the data is mirrored to the other side of the clock (see DataBus measurement theory) it's not the correct distance.

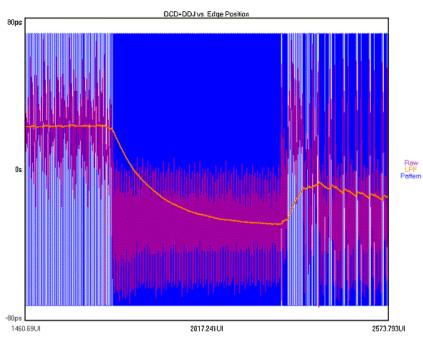
Table 1: DataBus Summary

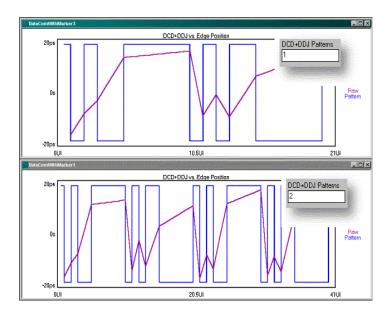

	Ref Chan 3	Chan 3 to 5
DJ(pk-pk)	1.276185ns	5.106ps
Lt-rmsJ	1.226ps	3.786ps
Rt-rmsJ	3.627ps	5.037ps
Ave-rmsJ	2.427ps	4.411ps
TJ	39.616ps	65.48ps
1-Sigma	232.137ps	5.718ps
Maximum	326.255ps	180.262ps
Minimum	-0.974406ns	134.361ps
Pk-Pk	1.300662ns	45.901ps
Unit Interval	212.002ps	321.493ps
Avg-Skew		155.599ps
Chi-Squared Lt		7.220909
Chi-Squared Rt		55.298004
Channel Voltages	-0.002872V	-0.002431V
Duty Cycle		47.651066%
Hits	270,000	435,231

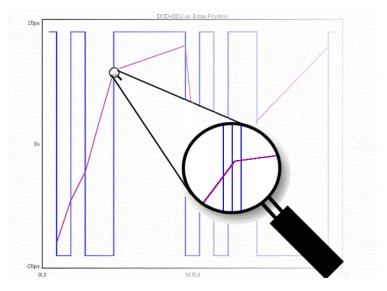
Data Channel - Select channel for data input.


- **Data Path** The Data Path button allows you to change directories if you frequently save measurement data to directories other than C:\Visi.
- **Data Dependent Jitter (DDJ)** The jitter that is added when the transmission pattern is changed from a clock-like to non-clock-like pattern. Includes Intersymbol Interference (ISI).

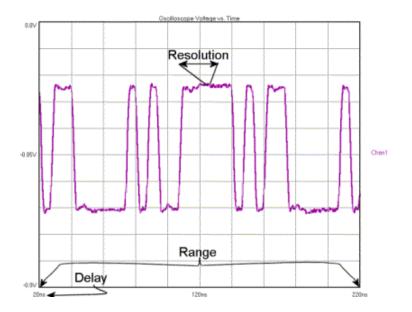
DDJ is generally due to bandwidth effects of the transmission media. The top view in the figure below shows a traditional oscilloscope view of DDJ effects. **Note:** Low transition density areas reach a different voltage than high transition density areas; this affects the Edge timing.


The bottom plot is from the dataCOM with Marker tool and shows a representation of the pattern where each edge is actually a histogram of edge measurements. The jagged line represents the mean deviation of each edge relative to its ideal time.


- **Data Standards** This selection determines the data rate of the signal and the 'Nominal Freq'. The selections are SATA1 (1.5gb/s Serial ATA), SATA2 (3.0 Gb/s Serial ATA gen2), PCI Express (2.5Gb/s) and custom. When custom is selected, the data rate is entered in the 'Nominal Freq. (MHz)' entry box.
- **DCD** + **ISI HPF** This option applies to a High Pass Filter to the DCD+ISI data. The resulting, filtered data is plotted on top of the raw DCD+ISI data in the DCD+ISI vs. Edge plot window. This feature allows the modeling of receiver performance given the measured (transmitted) data pattern if the characteristics of the receiver are known.


DCD + **ISI LPF** - This option applies a Low Pass Filter to the DCD+ISI data. The resulting, filtered data is plotted on top of the raw DCD+ISI data in the DCD+ISI vs. Edge plot window. This feature allows the modeling of receiver performance given the measured (transmitted) data pattern if the characteristics of the receiver are known.

DCD + ISI Patterns - Enter number of pattern intervals for which measurements will be taken. Defaults to 1 for compliance testing. Increase this value to see more pattern repeats on the dataCOM with Marker, DCD + ISI vs. Edge View (see figure below). Note: Bit Rate Patterns should be set greater than or equal to DCD + ISI Patterns because an accurate bit rate is important for calculating the ideal unit interval; DCD + ISI is calculated as a deviation from this ideal UI.


DCD + ISI Samples - This is the number of time samples in each histogram for each edge of the pattern. The histogram MIN, MEAN and MAX times can be seen in the DCD + ISI vs. Edge view. It is the mean value of the histogram that is compared to an ideal unit interval for each edge.

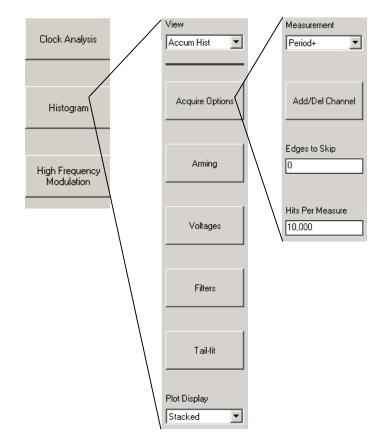
DCD + ISI Standard Error - Indicates when suspect measurements have been taken, usually as a result of improper pattern selection. Default is 0.5 UI. Any measurements deviating from the ideal by more than this value will produce an error message and the test will stop. This value may need to be increased if the signal has more than 0.5 UI of jitter (such as tolerance testing).

Default - Sets the histogram box to a center default position and size.

Delay - Sets the delay after the trigger of the first point to be measured. The limits are from 20ns to 100µs.

Delay (ns) - Sets the time delay of the waveforms, or use the "Horizontal Position" knob on the front panel. The limits are from 25ns to 3µs.

Delete this Plot Button - Clicking on button will delete the selected plot.


- **Deskew Calibration** Measures the difference between the channel paths in order to zero out those differences when taking a measurement. *GigiView*[™] has two Deskew calibration buttons. The Deskew Calibration button will guide the user through the measuring of the channel paths (AC channel calibration). The Deskew with DC Cal button will guide the user through both the AC calibration as well as DC calibrations. The DC calibration zeros out any DC difference between the channel inputs. See **Appendix C** for a complete explanation of all calibration features.
- **Deterministic Jitter (DJ)** Jitter with non-Gaussian probability density function. Deterministic jitter is always bounded in amplitude and has specific causes. Four kinds of deterministic jitter are identified: duty cycle distortion (DCD), data dependent (DDJ), sinusoidal (PJ) and bounded uncorrelated (BUJ) (to the data) jitter. DJ is characterized by its bounded, peak-to-peak value. Some typical causes of DJ are: crosstalk, switching power supplies and EMI.

Device Name (UNIX only) - The UNIX Device Name selection is not used at this time.

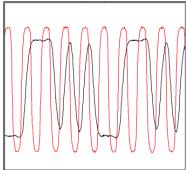
Diagnostic FFT - No FFT - The 1-sigma or FFT plots will not be available.

- Fc/1667 The FFT frequency band will be determined by dividing the bit rate by 1667. This selection will also display the 1-sigma plot as well as the FFT plot. For 1X Fibre, Fibre Channel, the –3db HPF is 637 KHz.
- User Defined Users have the ability to input a –3db HPF Frequency for the FFT plot. When a frequency is entered, the "corner Freq (kHz)" window becomes active and this is where you enter the frequency. By selecting "User defined", you will get a 1-sigma plot. The FFT frequency band will be from the Nyquist frequency down to this frequency.

Dialog Bar - Contains tool-specific parameter options.

Dialog Bar command (Display menu) - Use this command to display or hide the Dialog Bar, which provides a means of adjusting acquisition and display options. A check mark appears next to the menu item when the Dialog Bar is displayed.

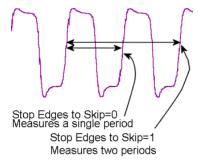
Dimensions Options - Opens menu for the sizing and positioning of the box used for histograms.


Disable All command (Action menu) - Use this command to stop all running windows simultaneously. Shortcut Key: F8

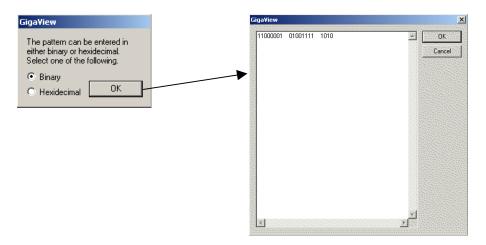
- Disconnect Network Drive Disconnect a network drive that is currently mapped to this instrument.
- **Display Errors** Displays up to 64, 20-bit portions of the pattern that contained a bit error. The bit in error is marked with a marker above the number. The bit error counter only operates at the discrete pattern match data rates. The position of the errors in the pattern can be viewed by switching the view to "Pattern".
- **Display Markers Horizontal** Only horizontal marker is shown. **Markers can be positioned by using the right button of a pointing device (mouse).** Click and drag near the marker to be repositioned using the right mouse button. Release the mouse button when the marker is positioned in the desired location. Note that you do not need to click directly on top of a marker in order to select it. The marker nearest your pick point will be selected.
- Display Markers None Neither horizontal nor vertical markers are shown.
- **Display Markers Vertical** Only vertical marker is shown. **Markers can be positioned by using the right button of a pointing device (mouse).** Click and drag near the marker to be repositioned using the right mouse button. Release the mouse button when the marker is positioned in the desired location. Note that you do not need to click directly on top of a marker in order to select it. The marker nearest your pick point will be selected.
- **Display Options** Clicking on this button enables the dialog bar for choosing persistence time, show IN or /IN channel--both or either, enable averaging, change zoom reference.
- Display Scale Choose the number of divisions for the histogram display.
- **Display Settings...** This popup dialog box allows access to display characteristics of the waveform, text and GUI. The user can customize signal trace display colors, the window background color and font type. For options to be activated after being changed, the Apply button must be clicked on before closing dialog box. Clicking on reset will set all parameters to default settings.
- **Double Data Rate** Double Data Rate should be turned on when a DDR clock is being used. DDR uses BOTH edges (rising and falling) of the clock, therefore the Data with Bit-clock tool and the DataBus tool need to measure from both the clock rising and falling to both the data rising and falling edges.

The example to the right shows a DDR clock and data; notice that the data is clocked by both rising and falling edges.

Duty Cycle (%) - Sets the duty cycle (%) of the OUTPUT and OUTPUT signals.



- **Duty Cycle Distortion (DCD)** DCD is caused when a data signal has a static duty-cycle error and/or this error varies with time. DCD is the difference in the mean pulse width of a "1" pulse compared to the mean pulse width of a "0" pulse in a clock-like (repeating 0,1,0,1,...) bit sequence. DCD is part of the D distribution and is measured at the ideal receiver threshold point.
- **Duty Cycle Enable** Choosing 'On' or 'Off' will enable or disable a duty cycle measurement. The results from the duty cycle measurement will be displayed on the Summary view
- Edge Count Displays the number of positive or negative pattern edges from the selected pattern. Value can be input manually. Edge Count mode is used when pattern lengths are not integer multiples of 20. For example, Edge count mode generates an arm signal using a pseudo-random bit stream (PRBS). The user can input the number of positive or negative edges in the pattern from the front panel or from the *GigiView* GUI screen. From the *GigiView* screen, the user can also input the pattern and the software will automatically determine the number of positive or negative edges in the pattern.


Edge to Measure - Select Rising or Falling edge to measure.

Edges to Measure - Number of edges within a range to be measured. To measure every edge in a range, the Edges to Measure value must equal the Range (Periods) value. Ex. - Range = 1000, Edges to Measure = 100 will measure every 10th edge. Only 100 edges will be measured in this range of 1000 periods.

Edges to Skip - Will determine the number of edges to skip before the time measurement stops. When measuring Period, a value of zero will create a histogram of single period measurements. A value of one will create a histogram of double period measurements, etc. Thus, when skipping one edge, the mean measurement would be doubled.

Edit Mask - Clicking on the Edit Mask button will provide access to fields for changing the position and size of the mask. **Edit Pattern** - Directly input data patterns in either binary or hexadecimal form.

- Effective Frequency (MHz/ns) Displays the SYNC OUT frequency value based on the Sync control setting. This value is non-editable and is for informational use only.
- **Effective Jitter** Several Bit Error Rate Testers (BERT) offer the ability to derive Deterministic Jitter and Random Jitter from a Bathtub Curve. Since this method is based on a pure DCD/DDJ jitter model, it tends to generate lower DJ and higher RJ values. This option is offered in the event values are desired that are determined on a comparable basis to a BERT.

High Limit - Upper limit of Bit Error Range over which the Effective Jitter is derived

Low Limit - Lower limit of Bit Error Range over which the Effective Jitter is derived

The Effective Jitter algorithm uses a total jitter (TJ) value to derive both DJ and RJ. This is opposite of the Tail-Fit algorithm which determines DJ and RJ to derive TJ.

Enable Button - Pressing on the Enable Button scrolls through Marker selections by displaying current selection on window. When desired marker is displayed, pressing the Select button_will activate marker selection.

Enable Eye Mask - Turns the Eye Mask on or off.

Enable Histogram - "Disabled" turns off any histograms

"Vertical" turns on a sample box used to create vertical, or voltage, histograms of the samples that fall inside the box.

"Horizontal" turns on a sample box used to create horizontal, or time, histograms of the samples that fall inside the box. It is important to note that these samples are derived from the Oscilloscope or Voltage Measurement Engine. To get the best time measurement histograms, use the HISTOGRAM Tool that allows calculation of RJ, DJ, and TJ. Error Tolerance (UI) - Measurements of an edge that exceed this value will cause an error.

- **Extended (Calibration)** The "Extended" check box will allow the user to select increased time periods for the Timer Calibration. Extended (internal) Calibration allows the user to possibly reduce jitter due to the noise floor of the instrument through the use of longer internal calibration periods. A pull down menu to the right of the Extended check box selects the length of the calibration. Note: performing a short length calibration immediately after a longer one will result in the loss of the earlier calibration information because the entire contents of the internal tables are replaced with each calibration.
- **External Arming** Selecting External Arm allows an external signal source to arm the instrument using any input. Once armed, the instrument measures the next pulse presented, with one measurement collected each time the External Arm signal is received.

The number of measurements corresponds to the sample size selected. When the number of measurements equal to the sample size is collected, computations are made and displayed in the statistics menus. The required Arm signal is any pulse with a minimum duration of 1ns pulse width occurring 3ns before the signal on the input. See also Auto Arming.

External Calibration - Performs a calibration of the OE-2. Step by step instructions are displayed.

Eye Mask Options button - This button opens a menu for configuring an eye mask.

- Fall Time Limit Pass-Fail limit for fall time measurement. This is set automatically if a protocol has been chosen.
- **FFT 1-clk** Will measure maximum amount of jitter between two adjacent clock cycles. The low frequency end of this view is rolled off at 20dB/decade showing the jitter frequency effects on a single clock period. This method is insensitive to low frequency jitter.

Used to identify a frequency component's contribution to period jitter. This is critical in applications with sensitivities to period deviation. Here, the user is interested in seeing what is causing period jitter. Applications sensitive to this include microprocessors, digital logic, DSP chips and other synchronous architectures. These users are also usually interested in cycle-cycle jitter, period jitter and other signal metrics as they relate to high frequency timing deviations.

FFT Alpha Factor - The varying of the Alpha Factor illustrates the inverse proportionality relationship between the spectral peak width and the sidelobe rejection of the Kaiser-Bessel window. As the Alpha Factor increases, the spectral peak widens and the sidelobes shrink. As the Alpha Factor decreases, the spectral peak narrows and the sidelobes increase in amplitude.

FFT in dBs command (Display menu) - If checked, FFT's will be displayed in decibels.

FFT N-clk - Will measure maximum amount of jitter between any two-clock cycles. This method is sensitive to low frequency jitter. All jitter frequencies have an equal effect on the clock in this view.

Used to compare frequency content of the timing noise relative to an ideal clock. This essentially measures a frequency component's contribution to overall time base deviation relative to an ideal (non-jittered) clock. This type of measurement is typical of applications sensitive to cumulative jitter such as communications devices and audio digitization.

When looking at jitter in specific frequency bands, it is critical to use the "n-clock" FFT since the amplitudes within the band must be compared to an ideal clock.

- **FFT, Padding Multiplier** Padding increases the frequency resolution of the FFT. Generally, a higher padding value will increase transformation processing time.
- **FFT Window** To reduce spectral information distortion of FFT's, the time domain signal is multiplied by a window weighting function before the transform is performed. The choice of window will determine which spectral components will be isolated, or separated, from the dominant frequency(s). Each window function has advantages/disadvantages over other windows.
 - FFT, Blackman Broad central peak. Good sidelobe rejection.
 - FFT, Gaussian Very broad central peak. No sidelobes.
 - FFT, Hamming Moderately sharp central peak. Poor sidelobes. First sidelobe cancellation.
 - **FFT, Hanning** Reasonable sidelobe rejection. Central peak as narrow as triangular window. Faster sidelobe fall-off than triangular window.
 - **FFT, Kaiser-Bessel** Very narrow spectral peak. Very large sidelobes. The Kaiser-Bessel FFT is the only FFT that has the Alpha Factor feature that contributes to the versatility of this FFT.
 - FFT, Rectangular No window weighting.
 - FFT, Triangular Narrow spectral peak. Large sidelobes. Moderate fall-off.

- Filters Enables/disables time and range filtering. The Window Filter is a post-processing filter that ignores measurements acquired outside of the filter parameters. The summary window will show the statistics from the measurements within the filter window and the histogram view will display the filtered region. The filter does not change the number of samples that fall within the filtered area, so the Hits Per Edge reflects the total unfiltered histogram. To increase the number of samples falling in the filtered area, the Hits Per Edge will have to be increased. For example, if there are two roughly equal distributions displayed without filters and the hits per edge is set to 1000, the probability of a value occurring in either distribution is equal. Therefore, the filtered data may contain approximately 500 hits. The window filter can be enabled in any of three ways: 1) choose Max/Min values, 2) choose Center and Width values or 3) From Markers button Turn filters on, enable markers, place markers at times on the x-axis to be filtered, press "From Markers". Once filters have been enabled, the reacquired data will show the filtered region. Maximum and minimum times (+/- 2.49 seconds) can be entered in pico, nano-, micro-, milli- or seconds depending on Units selection.
- Filter Setting Choose the filter setting. Available filters depend on the options installed in the OE-2[™]. The installed filters are read upon instrument power up only those installed will be displayed in this list. Choosing "full bandwidth" removes any filtering. Different protocols require the use of different filters.

Find Computer... - Displays dialog box that lets the user enter names of computers to find on the network.

Fine Delay - Displays the fine delay setting in multiples of 15.7ps.

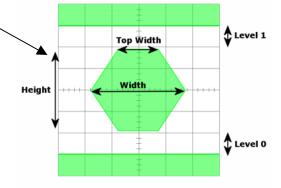
Fine Delay Index - Select the number of fine delays, 0-255.

 F_{max} Divider - Allows scaling of the FFT by dividing the upper frequency end of the FFT. Default is 1, which shows frequencies of jitter up to 1/2 the clock rate. Changing this value allows faster analysis of lower frequency information by skipping edges and ignoring high frequency effects. However, changing this value without changing the -3dB frequency will reduce the number of edges measured.

NOTE: Depending on the frequency of the clock being measured, it is possible that the Nyquist of the clock (1/2 the clock rate) could intrude into or be below the region chosen as the First Order filter frequency. Additionally, if the F_{max} Divider is set at any value other than one, this will eliminate any frequency content above divided Fmax. For example, if measuring a 400MHz clock, the Fmax or Nyquist is 200MHz. Therefore, a First Order filter set to 20MHz would be 20dB down at 200MHz. But, if the Fmax divider is set to '2', then the "nyquist" or "Fmax" would be 100MHz and would cut into the first order filter. In this case, the RJ(RMS) value measured may not contain the same spectral content as did the measurement with Fmax set to '1'. The reported RJ(RMS) value would be lower with the Fmax set to '2'.

- **Force Pulsefind** When on, performs a pulse find after each histogram giving the user updated voltage information with each run. With Force Pulsefind OFF, the original threshold values are used and do not change.
- **Force-Fit** Without Force-fit, a Tailfit uses a number of statistics to assess whether the quality of solution is sufficient before returning a result. Using Force-Fit relaxes these constraints and assumes the user has determined that the Minimum Hits to perform the Tailfit is sufficient to return valid results.

Frequency (MHz) - Sets the frequency (MHz) or period (ns) of the OUTPUT and OUTPUT signals.


- **Frequency Resolution (Hz)** Sets the frequency resolution. This determines the number of data points displayed in the spectrum plot. The minimum number of data points required to generate a plot is 1000. Thus the frequency resolution must be less than 2000 times the maximum frequency. A small value for the frequency resolution will increase the measurement time.
- **From Markers Button** When Filters are ON and the vertical markers are enabled and positioned by the user, clicking on the From Markers button automatically sets the filters according to the vertical marker positions.
- **Function (Adjacent Cycle)** Choices are Period(+), to measure between rising edges, or Period(-), to measure between falling edges.

- **Gaussian** A statistical distribution (also termed "normal") characterized by populations that are not bounded in value and have well defined "tails". Analog amplifiers are the most important source of Gaussian noise in serial data transmissions. The term "random" in this document always refers to jitter that has a Gaussian distribution.
- Global Tool Settings... This popup dialog box allows access to settings that can affect all tool applications.

The rise/fall setting is global for tools such as the Oscilloscope and Clock Analysis tool.

There are two fixed settings 10%-90% and 20%-80%. Two 'user' settings also allow you to determine the levels at which to measure rise and fall time. 'User Volts' is an absolute setting for the voltage levels. The High Level and Low level can be independently set. 'User %' allows you to choose a 'Low Level %'. The signal is measured to determine the peak high and low, and rise time levels are set to a percentage of the total amplitude. The High level is automatically set.

- **Goodness-of-Fits** Goodness-of-fits is used as a gauge to determine how "good" the fit is. The fitting function is Gaussian and the fitting algorithm is nonlinear so it can handle both linear and non-linear fitting functions. Low values indicate better fits.
- **GPIB Address Assignments tab** This popup dialog box manages the address settings for both the GPIB host and the remote OE-2(s). Up to five can be addressed in a single system. The GPIB Board selection controls the host GPIB address while the GPIB Device selection sets the address of the remote OE-2(s). Set the GPIB Device setting to the DIP switch setting on the back panel of the OE-2 and select the Add Device button. The OE-2 address will appear in the Remote Device List. In the case of multiple OE-2 installations, each remote device will have to be added individually.
- **GPIB Board** Controls the host GPIB address. GPIB Board should be set to the card address for the bus connected to the OE-2.
- GPIB Configuration... This popup dialog box gives the user easy access to GPIB addresses and target devices.
- **GPIB Device** The GPIB Device selection sets the address of the remote OE-2 connected to the GPIB bus. Set the GPIB Device to the DIPswitch setting on the back panel the OE-2 and select the "Add Device" button. The OE-2 address will appear in the Remote Device List. In the case of multiple OE-2 installations, each remote device will have to be individually added.
- **Header Offset** Allows user to skip a given number of edges, after the external pattern marker, before sampling. This can be helpful in applications such as Hard Drives where a header precedes a repetitive data sequence in the data stream. This option is only available when using external arming and applies to all dataCOM sampling, including Learn Pattern.
- Height (mV) Scale the height of the histogram box in relative or absolute values.
- **Help Button** Clicking on the button activates context sensitive help. Once activated, the cursor changes to the Help Topics icon and will remain so until another click of the pointing device occurs. Upon clicking the second time, help text will be displayed.
- Help Topics Button Clicking on this button will start the online help system. A directory will be displayed from which the user can access information about *GigiView*. From the opening screen, you can jump to step-by-step instructions for using *GigiView* as well as various types of reference information. Once you open Help, you can click the Contents button whenever you want to return to the opening screen.
- **Height (mV)** Scale the height of the histogram box in relative or absolute values.
- **Hide Display Channels button** Opens a selection box to turn on or off a view of a specific channel.
- **High Limit** Upper limit of Bit Error Range over which the Effective Jitter is derived.
- **Histogram Options Button** This button will open a menu for configuring a histogram window. The histogram shows statistics from the samples that fall inside this window.

Hits Per Measure - Determines the number of time measurements that will be made for each edge or point on the plot. See Histogram Theory.

- **Histogram Options button** This button will open a menu for configuring a histogram window. The histogram shows statistics from the samples that fall inside this window.
- Hits per Pass Number of time measurements included in an Histogram.

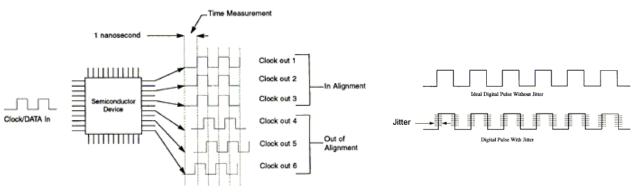
Hold Time (ns) - Enter the hold time specification. This will change the darkened area on the Data Histogram plot, showing a window of pass or fail.

Hold Zoom command (Display menu) - Maintain current zoom setting when in Run/Cycle mode.

- HPF (kHz) User defined High Pass Filter value, in kilohertz, for the DCD + ISI HPF option. Default is 637kHz.
- HPF -3dB Lower Rolloff Frequency (kHz) The HPF -3dB Lower Rolloff Frequency is the Frequency of the Half Power Point of the 20dB/decade low frequency rolloff. The choice of this frequency will determine the low frequencies visible on the FFT. The -3dB Lower Rolloff Frequency (kHz) is used to determine the maximum measurement interval to be used in sampling and is entered in kHz. A lower -3dB Lower Rolloff Frequency extends the time required to acquire the measurement set because histograms over many more periods must be acquired. Below the -3dB Lower Rolloff Frequency, a natural roll-off of approximately 20dB per decade is observed. The default value is 637kHz, a Fibre Channel standard, except for the High Frequency Modulation Tool that is 100kHz.
 -3dB Lower Rolloff Frequency affects how much data is acquired and, therefore, the choice of this value also affects the test time. See the Theory Section for High Frequency.
- **Initial Damping Factor** Either sets or displays the initial guess for fitting of the damping factor, depending on the setting of the **Calc Init Conditions**.
- **Initial Natural Frequency Factor** Either sets or displays the initial guess for fitting of the natural frequency, depending on the setting of the **Calc Init Conditions**.
- **Initial Power Spectral Density Frequency** Either sets or displays the initial guess for fitting of the input noise level, depending on the setting of the **Calc Init Conditions**.
- Initial Offset Frequency Factor Sets the lowest frequency displayed when View is set to PLL Transfer.
- **Input Pairs** Choices are Differential or Single-Ended. Differential displays the combination of the Input and Input on a channel. Single-Ended displays the Input and Input signals as independent traces. This is the only mode where the IN and IN can be treated as independent measurement channels.
- **Intersymbol Interference (ISI)** Data dependent deterministic jitter caused by the time differences required for the signal to arrive at the receiver threshold when starting from different places in bit sequences (symbols). For example when using media that attenuates the peak amplitude of the bit sequence consisting of alternating 0,1,0,1... more than peak amplitude of the bit sequence consisting of 0,0,0,0,1,1,1,1... the time required to reach the receiver threshold with the 0,1,0,1... is less than required from the 0,0,0,0,1,1,1,1.... The run length of 4 produces higher amplitude that takes more time to overcome when changing bit values and therefore produces a time difference compared to the run length of 1 bit sequence. When different run lengths are mixed in the same transmission the different bit sequences (symbols) therefore interfere with each other. ISI is expected whenever any bit sequence has frequency components that are propagated at different rates by the transmission media.

ISI is caused by a data path propagation delay that is a function of the past history of the data. It occurs in all finite bandwidth data paths. It is also known as Data Dependent Jitter (DDJ).

- **Interval (s)** Enter time between measurements in seconds. For example, 10 seconds would set the tool to create an entire histogram every 10 seconds and plot the results. Longer intervals allow long-term tests to be performed showing measurement changes over minutes or hours.
- Invert Pattern Inverts the selected pattern. This option is useful when using one amplifier on the AG-100.


Jitter - Jitter is a period / frequency displacement of a signal from its ideal location. These displacements can occur in amplitude, phase or pulse width and are generally categorized as either deterministic or random in nature. The reference event is the differential zero crossing for electrical signals and the nominal receiver threshold power level for optical systems. Jitter is composed of both deterministic and Gaussian (random) content.

Total jitter is the convolution of Deterministic Jitter (DJ) and Random Jitter (RJ). (See Fibre Channel Methodologies for Jitter Specification REV 10 page 30, at ftp://ftp.t11.org/t11/member/fc/jitter_meth/99-151v2.pdf). Deterministic Jitter is composed of Duty Cycle Distortion (DCD), Inter-Symbol Interference (ISI), Periodic Jitter (PJ) and Bounded Uncorrelated Jitter (BUJ).

At very high frequencies, unchecked jitter causes:

- Flicker in video devices
- Clicks and glitches in audio devices
- Disparity between input and output serial data in network applications
- Devices such as computers to operate slowly and potentially crash.

Currently, some semiconductor devices require jitter tolerances as low as 50 picoseconds and allow one bit error per 10 thousand billion clock cycles. Therefore, jitter measurements are critical during the prototyping and developmental stages of the semiconductor devices. The more accurately device performance is measured and errors corrected prior to production, the faster the device can ultimately operate.

Time Measurement Relationship of Clock Out from Output Pin to Output Pin.

- Jitter Amplitude Jitter amplitude applied to the OUTPUT and OUTPUT signals. Amplitude Jitter is defined as the peak-to-peak jitter in one clock cycle (or period) of the Frequency control value.
- Jitter Distribution Selects the Jitter Distribution type that is loaded into jitter memory and applied to the OUTPUT and OUTPUT signals when jitter is enabled. There are six jitter distribution choices: Sine, Triangle, Sawtooth, Random and Psuedo Random.

Jitter Frequency (MHz) - Sets the Jitter frequency (MHz).

- Jitter Mode Period Jitter is defined as the peak-to-peak jitter in one clock cycle (or period) of the Frequency control value. Cumulative jitter is defined as the peak-to-peak jitter in one cycle of the Jitter Frequency control value. (See theory of jitter generation section.) The Summary Units control specifies how the amplitude will be displayed: Unit Interval (Where a Unit Interval is defined as one clock cycle of the Clock Frequency control value); Nanoseconds (nanoseconds peak-to-peak) and Degrees (degrees peak-to-peak where one clock cycle equals 360°). Changing the value in one jitter amplitude control will affect the other.
- **Jitter Output** This control turns the jitter On or Off for the OUTPUT and OUTPUT signals. The current values in the Jitter Amplitude, Jitter Frequency and Distribution controls determine the amount and type of jitter applied.

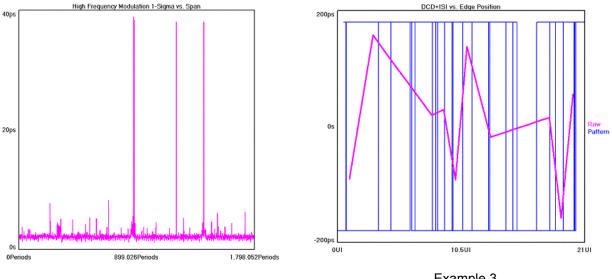
K Coefficient - Loop gain, having a dimension of radian frequency.

- Keep Out Enable By turning this feature on, the user is able to define an exclusion region for Tail Fit. When a keep out region is defined, the Tailfit or Gaussian distributions will only be fit to the left and right of the keep out region. To define a keep out region the Current View must be either on Left or Right Histogram. This feature can be useful for capturing low probability events.
- Keep Out Frequency Left Limit (kHz) A user definable frequency for the left side of the distribution for exclusion.

Keep Out Frequency Right Limit (kHz) - A user definable frequency for the right side of the distribution for exclusion.

Keep Out Left Limit (ns) - A user definable time for the left side of the distribution for exclusion.

Keep Out Region - For defining a "keep out" region of the Right and Left histograms.


When a keep out region is defined, the Tailfit or Gaussian distributions will only be fit to the left and right of the keep out region. To define a keep out region the Current View must be either on Left or Right Histogram. The keep out region is useful because the mean position of the Gaussian tails is a loosely constrained variable and defining a keep out region can reduce the time required to converge to a stable location.

Keep Out Right Limit (ns) - A user definable time for the right side of the distribution for exclusion.

Known Pattern with Marker Arm Violation - There are 3 potential arm violation problems in this tool:

The first is when the dataCOM software gives an error "Failed DDJ measure – Bad pattern or Signal". If the setup is correct (see Known Pattern with Marker setup), this may be an arm violation. After the arm event, the tool measures edge transitions (see Known Pattern with Marker Measurement Theory). If the tool gets many arm violations, the measured edges are not in the expected position, which results in an error.

The second example is when there are only occasional violations during the 1-sigma measurement section of the tool. The result here can be seen in the figure below. This will be viewable from the 1-sigma plot of this dataCOM tool.

Example 2

Example 3

The third situation is when the tool is in the DCD&ISI section of the measurement and it gets only one or two arm violations. When this happens the DCD&ISI vs. Edge plot will look like the figure above.

As it is trying to measure a given edge of the pattern (see KPWM measurement technique) it gets many measurements that are near the ideal position but it gets a couple that are 1 UI or 2 UI off (depending on the pattern). This happens because the arm plus the user input delay (19-21ns) is very close to the first edge of the pattern. The tool usually sees the first edge and then makes the correct measurement. But, due to jitter on the arm and/or the data, during a couple of the measurements it doesn't see it and thus measures the next edge to the 5th edge after that. This is the wrong transition and will be 1UI or more off.

Learn Pattern - A pattern may be "learned" if it is not already stored as a .ptn file or too long to be manually entered in Edit Pattern. The data stream must be relatively jitter free and a suitable pattern marker must be available as an external arm.

The number of bits in the pattern must be known and the Bit Rate must be entered as precisely as possible. If there are errors trying to "learn" at a high bit rate and it is possible to have a slower, clean pattern (from a pattern generator), the pattern may be learned at this slower rate (adjusting Bit Rate accordingly).

Giga¥iew	×
Total number of bits in pattern:	Learn
20	Cancel
Bit Rate (Mb/s):	
1062.500000	

Note: Include DCD + ISI calibration is to be used only in special circumstances. Enabling this will directly subtract the DCD + ISI when the pattern is learned from the subsequent measured values. This is not always appropriate because the two values are not necessarily linear.

Using this function assumes that the "learn" will be performed on a perfect signal (from a generator with short cables) at the intended measurement rate, then this learned pattern (now with DCD + ISI values) is used for the measurement.

Load Mask - Opens a dialog box for choosing a previously saved mask.

Load Pattern - Load previously defined pattern file.

Open		<u>? ×</u>
Look in: 🔁	Visi	
Adobe ChmMacro: prevhelp Security wizard (F) Zip 250	폐 cjtpat.ptn 폐 clock.ptn 폐 clock256.ptn) idle.ptn)))))))))))))))))))
File name:	*.ptn	Open
Files of type:	Pattern Files (*.ptn)	▼ Cancel
	🗖 Open as read-only	

- Low Power (TX only) In the PCIe testing, there are two modes in which the Transmitter can operate: High Power mode and Low Power mode. In the Low Power mode, there is no Pre-emphasis on the signal. By default, the tool is set to work in the High Power mode.
- Low Limit Lower limit of Bit Error Range over which the Effective Jitter is derived.
- LPF (kHz) User defined Low Pass Filter value, in kilohertz, for the DCD + ISI HPF option. Default is 531.25kHz.

Macro Edit command (Action menu) - Allows a user to modify or create a macro that can then be replayed.

Macro Interface Overview - GigiView provides Macro Record and Playback features for scripting and automating activities performed on a repetitive basis. The Macro interface is based on Microsoft's VBScript language that includes the ability to control program execution using conditional and looping statements. See Appendix A for detailed explanations of all macro commands.

Macros can be recorded and then modified or written from scratch. The Macro interface can also be used to access GigiView functionality from an external application. In particular Microsoft Visual Basic may be used, but other programs which support the VBScript language such as Microsoft Word and Excel may also be used.

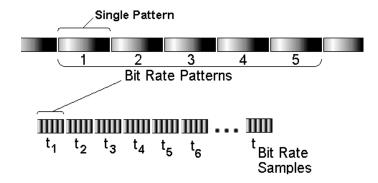
Macro Play (Action menu) - Allows a user to playback a series of steps that were previously recorded.

Macro Record (Action menu) - Allows a user to record a series of steps that can then be replayed.

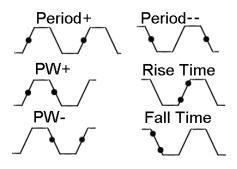
Manual Channel Skew - Clicking on this button will reveal a panel for entering relative channel skews for up to 10 channels. Manual Channel Skew is used to compensate for external paths. The Deskew Calibration Only and Deskew Calibration with DC Offset will deskew the internal paths of the SIA-3000 to the front panel SMA connectors. These calibrations do not compensate for external cables from the SIA-3000 inputs. Some measurements that the SIA-3000 makes are between channels or "channel to channel." Examples are the Propagation Delay and Skew, DataBus and Random Data with Bit Clock tools. It is important to use matched cables to perform these measurements. If

Manual Cha	nnel Skew	5		×
	Relative cha	annel skews i	n picosecon	ds
Chan1	Chan2	Chan3	Chan4	Chan5
0.000000	0.000000	0.000000	0.000000	0.000000
Chan6	Chan7	Chan8	Chan9	Chan10
0.000000	0.000000	0.000000	0.000000	0.000000
OK		Cancel	1	Reset

matched cables are not available, but the electrical length (or time delay) of the cables are known, the Manual Channel Skew Dialog Box allows these times to be subtracted from these external paths in the measurements. It is also sometimes necessary to compensate for skew that is particular to the Device Under Test. The values entered in Manual Channel Skew will affect ALL channel-to-channel measurements until these settings are reset to zero. Powering down the SIA-3000 will also reset these values to zero.


NOTE: When measuring differential signals using two cables per channel, the cables should be a matched pair. This skew table does not compensate for mismatches in this pair and is only for channel-to-channel measurements. A mismatched pair may lead to other problems such as causing the cross point of the signals to appear too close to the top or bottom at the SIA-3000 inputs and not in the middle, or 50%.

Map Network Drive - Make a network drive available to this instrument.


Margin (%) - The amount of margin allowed in the masked regions.

- Markers Provides movable grid lines. The four movable markers can be displayed all at once, horizontal markers only, vertical markers only or no markers at all. Text near the top right of the panel displays the position of each marker and the difference between them. Markers can be positioned by using the right button of a pointing device (mouse). Click and drag near the marker to be repositioned using the right mouse button. Release the mouse button when the marker is positioned in the desired location. Note that you do not need to click directly on top of a marker in order to select it. The marker nearest your pick point will be selected.
- Markers Both (Display menu) Displays both horizontal and vertical markers. Markers can be positioned by using the right button of a pointing device (mouse). Click and drag near the marker to be repositioned using the right mouse button. Release the mouse button when the marker is positioned in the desired location. Note that you do not need to click directly on top of a marker in order to select it. The marker nearest your pick point will be selected.
- Mask Dimensions The Eye Mask can be sized either in absolute or relative terms. When "absolute" is selected, the mask is sized using voltage levels and timing values. Selecting "relative" will allow you to scale the mask as a percentage of an existing eye on the screen. To do this, first center the eye on the screen. Then select the percentage sizes for height, width, etc and press "Scale to Fit". This will set up the mask from the entered values relative to the displayed eye.
- Mask Name Displays the name of the loaded mask.
- Mask Setup Clicking on this button opens a dialog bar for selecting, saving, sizing and positioning of the Mask.
- Maximum Effective Rate Enter maximum value for curve fit range when calculating effective deterministic and random jitter.
- **Maximum Filter (MHz)** Upper frequency limit for the window over which RJ and PJ is calculated. Default is Nyquist. See RJ + PJ max filter.
- Maximum Frequency (kHz) Determines the resolution of plot in the FFT view or the time between measurements in Time View. Decreasing the Maximum Frequency increases the time between measurements allowing lower jitter frequencies to be captured.

- Maximum SSC Frequency (kHz) When the 'Data Standards' selection is "Custom", this in combination with Minimum SSC Frequency, determines the SSC frequency range over which the tool will search for the maximum SSC ppm deltas.
- Measure Bit Rate (Mb/s) Measures the Bit Rate based on a correctly defined pattern. The bit rate is derived by measuring the total time over a number of pattern repeats and calculating an ideal unit interval.

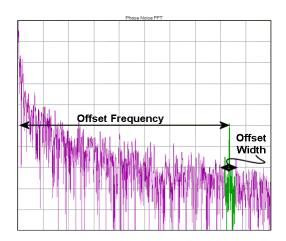
- Measure Edge Count Enter a number of edges to skip on the measured edge(s) relative to the arm time. Typically, skews would be measured on edges consecutive to the Reference, so the Ref Edge count and Meas Edge count would be equal.
- Measure Incr (Periods) Choose the increment step size of the number of cycles to measure.
- **Measure RJ + PJ Per-** Plots RJ + PJ time measurements for Period (falling edges to falling edges). See Measure RJ + PJ Per+. See also High Frequency Modulation Theory.
- **Measure RJ + PJ Per+** Plots RJ+PJ time measurements for Period + (rising edges to rising edges). See Measure RJ + PJ Per-. See High Frequency Modulation Theory.
- Measure RJ + PJ PW- Plots RJ + PJ time measurements for PW- (pulse width falling edges to rising edges).
- Measure RJ + PJ PW+ Plots RJ + PJ time measurements for PW+ (pulse width rising edges to falling edges).
- **Measurement** Select primary measurement configuration for the unit: Rise time, Fall time, PW+, PW-, Period + and Period -.

- Minimum Data Points Determines the number of time measurements shown on Time View and refers to the number of hits in the histogram. Directly affects FFT resolution. A larger value results in greater FFT resolution and the ability to see lower frequencies.
- Minimum Delay (ns) Sets time delay between reference clock edge and data edge allowing different data edges to be measured. Due to the measurement technique, the closest data edges to a clock reference edge are captured. An oscilloscope has an inherent trigger delay. This value corresponds to the trigger delay on an oscilloscope.

Minimum Effective Rate - Enter minimum value for curve fit range when calculating effective deterministic and random jitter.

- **Minimum Filter (MHz)** Lower frequency limit for the window over which RJ and PJ is calculated. Default is Corner Frequency. This setting cannot be set lower than the corner frequency.
- Minimum Hits A Tailfit is not attempted until the number of hits specified is acquired.
- Minimum SSC Frequency (kHz) When the 'Data Standards' selection is "Custom", this in combination with Maximum SSC Frequency, determines the SSC frequency range over which the tool will search for the maximum SSC ppm deltas.
- **Mode** This mode selects the amount of persistence. **Infinite persistence** holds all measured samples on the screen until "clear" is pressed or the configuration is changed. The other persistence values hold the measured samples on the screen for the amount of persistence time selected. **Dot Connect** connects samples with a line.
- Modulation Limit Pass-Fail limit for modulation. This is set automatically if a protocol has been chosen.
- Modulation Measure Select if modulation should be measured in "extinction ratio" or "optical modulation amplitude".
- Modulation Unit Select unit of measure for modulation (dB, ratio in Extinction Ratio; or mW, μ W, in Optical Modulation Amplitude).
- **Natural Rolloff** When selected, does not add any filtering but refers to the natural –3db rolloff, or high pass corner frequency, that is determined by how much data the tool is allowed to acquire. The corresponding user entry box is deselected and the value in the box is not used.
- **Network Properties** Click on this selection to configure the network properties. Provides access to tools and parameters providing/regulating network access.
- Network Neighborhood... Click on this selection to see files and directories on your network/domain or to browse the network neighborhood.
- **New command (Tool menu)** Use this command to create a new tool in *GigiView*. When selected the dialog bar on the right hand side is filled with choices that you can select to create a new tool. You can open a previously saved tool with the Open command. Shortcut Key: CTRL+N.

- New View Clicking on the New View button will open a new window of the active tool.
- Next Window Command (View menu) Switch to the next tool view/window pane.
- **Nominal Frequency (MHz)** When Data Standards is set to Custom, this selection will set the target operating frequency (i.e. 1.5Gb/s data in a 1010 pattern is 750MHz).
- **OE-2 Dark Calibration button** Performs a calibration of the OE-2. Step by step instructions are displayed. The dark level calibration of the OE-2 sets the "dark level" of the OE-2. It is a reference level for which all measurements are made. A daily calibration must be performed on each port of the OE-2. When the "DARK CALIBRATION" button is pushed, only the port in the "SIA CHANNEL" box will be selected for calibration.


To perform a dark level calibration, complete the following steps.

- 1) Remove all optical signals from the input connectors.
- 2) From the OE-2 Main Dialog Bar, click on Acquire Options.
- 3) Select the SIA Channel that you would like to calibrate.
- 4) Select the OE-2 Dark Calibration button.

Note: You will need to repeat steps 3 and 4 if you have a dual port OE-2. When the calibration has finished, the message "Calibration completed" will appear. After the calibration has completed, clean the ends of the fiber optic cables and connect to the input port on the OE-2.

OE Device Search - Clicking on this button will automatically search the GPIB network and identify all connected OE-2's. In addition, clicking on this button will bring up a pop-up box that asks if existing configurations are to be deleted.

- **Offset (mV)** Sets the voltage offset of the waveform, or use the "Vertical Position" knob on the front panel.
- Offset (ps) Offsets the specification area (in picoseconds).
- Offset Frequency (Hz) Frequency at which dBc is calculated.
- **Offset Width (Hz)** Range of frequencies, centered on the offset frequency, over which the dBc is calculated.
- **Offset\Width Limits** Choose between typical setup and hold limits and worst case setup and hold limits. "Typical" references the Mean of the clock histogram. "Worst case" references extrapolated Min and Max values of the measured clock histogram using Tail-fit.

- **Online Documentation** This selection provides access to *WAVECREST* Manuals, Application Notes and Technical Bulletins. When selected, an active index for all *WAVECREST* Corporation documentation is displayed in Adobe Acrobat Reader (version 3.0 or later). Click on the Document Summary number for a brief overview of the document or click on the Document Number to bring up the document in Adobe Acrobat. Acrobat is available during the installation of *GigiView* or from Adobe.com.
- **Open command (Tool menu)** Use this command to open an existing/saved tool in a new window. You can open multiple tools at once. Use the **Tool** pull down menu to switch among the multiple open tools. See also 1, 2, 3, 4... command. Shortcut Keys: CTRL+O Toolbar.

- **Open PM Utility** Available only if pattern marker is selected as trigger. Clicking on this button will activate the PM50 Tool in *GigiView*.
- **Optical Channel Assignment** Clicking on the **Optical Channel Assignment** tab will initiate the GPIB polling process to see that each OE-2 is correctly addressed. Each OE-2 correctly addressed will be shown in the Optical Input window, along with its GPIB device address. If an OE-2 connected to the bus does not appear in the window, its address may be incorrectly set. Return to the GPIB Address Assignment window to correct the address settings.

It is necessary to assign which channel of each OE-2 is connected to which channel of the instrument. This is done by highlighting one line in the Optical Input window (corresponding to one channel path) and selecting the DTS or SIA input channel in the SIA Channel window. To activate this channel, click the "Active" box.

- Optical Input This area lists each OE-2 connected to the instrument.
- **Optical Configuration Command (Edit Menu)** Permits Optical instrument settings to be modified. The user can customize GPIB board and device addresses as well as optical parameters. Please refer to your OE-2 User's Guide for more information.
- **Optimize Button** If **Calc Initial Conditions** is set to **On**, this will estimate initial conditions based on prominent features of the data and perform least squares fitting of data to 2nd-order PLL transfer function.

If **Calc Initial Conditions** is set to **Off**, this will perform least squares fitting of data to 2^{nd} -order PLL transfer function using user-entered initial conditions.

Output Amplitude (V) - Enter output amplitude for Custom output configurations. See Output Levels for limits.

- Output Level This list control displays 10* predetermined and 3 user definable presets for the configuration of the impedance, high, low and voltage limit settings for the selected Output or Sync levels. First, the user should make a selection from the Output Level control. Choices appear for many types of standard logic, including ECL, PECL, TTL, CMOS (3.3V), and CMOS (5V). Selecting any of these will automatically determine the input's voltage threshold and termination impedance, and these values will be filled in and cannot be selected for the user to change. There are also choices for three custom voltage levels available to the user. If any of the custom voltage levels are chosen, the termination impedance and voltage threshold controls become active and their values need to be specified. See the DTS-550[™] Operator's Guide for Sync Level parameters.
- **Output Offset (V)** Sets the main output offset level in the three custom output level presets. Refer to custom Output Level for maximum and minimum offset values.

- **Output Termination** Sets the termination impedance for the selected channel. This list control is available only when the Custom 1-Custom 3 presets are selected.
- **Overlays command (Display menu)** Gives the user the option of displaying up to 10 measurements, or sets of measurements, on top of each other for comparison on the same plot. The most recent measurement is a dark line while previous measurements are light lines of the same color.
- **Padding Multiplier** Padding increases the frequency resolution of the FFT. Default is 16. Generally, a higher padding value will increase transformation processing time.
- **Passes to Average FFT** Selects the number of passes to average for the FFT output. Averaging will generally reduce the noise floor of the FFT.
- **Passes to Average PPM** Sets how many of the PPM histograms (sample size determined by 'PPM Samples') are measured. The PPM plus and PPM minus are then the average of these histograms.
- Pattern Displays current pattern being used.
- **Pattern (SSC)** Select the data pattern type. 10 means the data is a 101010 clock-like pattern. 1100 means the data is a 110011001100 clock like pattern, etc.
- Pattern Button Opens a page of pattern options.
- **Pattern Marker** Repeating edge, once per pattern, which occurs at same relative position in the pattern (See figure to the right.)

Data	ΠΠ	
Pattern Marker		

- **Pattern Marker (PM50)** Selects the pattern marker card that will be used. PM1 designates that a pattern marker card is attached to data channel 1 and a pattern marker will be generated from the data on channel 1. This Pattern Marker can be used as an arm by any channel.
- Pattern Marker Mode (AG-100 and PM50) **Only available in SIA-3000 with PM-50 (pattern marker) option.** The PM-50 can be selected (via the Trigger button) to generate the marker. This field allows configuration of the PM-50 as either Edge Count or Pattern Match. See PM-50 Online Help. Select either Pattern Match or Edge Count. In Pattern Match mode, the pattern marker card will generate a Pattern Marker when matching a unique 40bit sequence of a pattern. The Patn Mkr Standard then needs to be selected accordingly. In Edge Count mode, the pattern marker card will generate a *pattern marker* upon repetition of a user-specified number of positive or negative edges (frequency agile from xMHz to 5GHz). For PRBS patterns use Edge Count mode only.
- **Pattern Marker Standard (Optical)** Choose the interface standard speed being used when in Pattern Match mode (i.e. FC 1x, FC 2x, GBE...).

AG-100 Pattern Marker Standard

Select either Fibre Channel or Gigabit Ethernet.

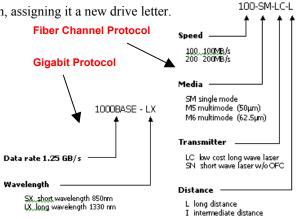
	Speed = 1X	Speed = 2X
Fibre Channel (FC)	1.0625 Gb/s	2.125 Gb/s
Gigabit Ethernet (GBE)	1.25 Gb/s	2.5 Gb/s

- Pattern Match Pattern Match mode is used when the pattern has a unique, repeating 40-bit word in the pattern. In the case of Fibre Channel compliant patterns, the Start Of Frame (SOF) header is used. For example, for CRPAT, the SOF is "3EAAA6A5A9". To have the AG-100 generate a marker using CRPAT, the push wheel switches would be set to "3EAAA6A5A9" or input from the GUI interface in *GigiView* would be used. Every time the AG-100 recognizes this unique 40-bit pattern, it will produce an arm signal. Pattern marker mode can be used manually or with *GigiView* software.
- **Peak-to-Peak** For any type of jitter, the minimum, full range of the jitter values that excludes (includes all but) 10^{-12} of the total jitter population.
- **Perform Calibration** The Perform Calibration selection is used to access the instrument's calibration options and has a separate button for each option. The instrument firmware version is used by *GigaView* to determine which features the instruments can support and is displayed at the top of the dialog window. A time/date stamp below the firmware identifier is a log of when the instrument was last calibrated through *GigaView*. See Appendix C for more information.
- **Perform Optimization** Automatically positions the pattern marker in a low transition density region of the data pattern to ensure reliable jitter measurements. Perform Optimization needs to be initiated whenever a change has occurred to the setup conditions such as adding more jitter to the data pattern for tolerance testing.

Perform Placement Button - Automatically places an arm edge in a low transition portion of the pattern.

- **Periodic Jitter (PJ)** Periodic Jitter (PJ) is caused by one or more sine waves and its harmonics. It is typically the result of signal crosstalk. Jitter that is sinusoidal and is bounded.
- Plot Display Display plots overlaid or stacked in rows on top of one another.
- **Plot Interpreter** This module helps the user interpret plots of actual measurements and to understand how to continue analysis and provide the most comprehensive "picture" of signal integrity. Jitter has many components that can influence each other in many combinations. Therefore, this interpreter only offers general ideas and descriptions of acquired measurements. It will not always describe the exact cause of jitter on measured signals or the exact procedure to continue analysis. The interpreter is intended to serve only as a guide to offer possible directions of troubleshooting, analysis or study.
- Plot to Add Select from available plots on the desktop to add to the current composite plot.
- Plot to Delete Select from available plots on the desktop to add to the current composite plot.
- Plots Displays graphical equivalent or textual summary of composite data.
- **Power Units** Select from units of dBm, μ W, or mW for all power measurements.
- **PPM Samples** The number of sample taken when acquiring the histogram used for calculating the PPM deltas (PPM plus and PPM minus).
- Previous Command (View menu) Switch back to the previous window pane.
- **Print command (Tool menu)** Use this selection to print a tool view. This command presents a Print dialog box, where you may specify the range of pages to be printed, the number of copies, the destination printer and other printer setup options. Shortcut Keys: CTRL+P

- **Print Preview command (Tool menu)** Use this selection to display the active tool view as it would appear when printed. When you choose this command, the main window will be replaced with a print preview window in which one or two pages will be displayed in their printed format. The print preview toolbar offers you options to view either one or two pages at a time; move back and forth through the tool view; zoom in and out of pages; and initiate a print job.
- **Print Setup command (Tool menu)** This selection presents a Print Setup dialog box where you specify the printer and its connection. This selection also presents options for adding or removing printers.
- Print Setup dialog box The following options allow you to select the destination printer and its connection.
 - **Printer** Select the printer you want to use. Choose the Default Printer; or choose the Specific Printer option and select one of the current installed printers shown in the box. You install printers and configure ports using the Windows Control Panel.
 - Orientation Choose Portrait or Landscape.
 - Paper Size Select the size of paper that the tool view is to be printed on.
 - Paper Source Some printers offer multiple trays for different paper sources. Specify the tray here.
 - **Options** Displays a dialog box where you can make additional choices about printing, specific to the type of printer you have selected.


Network... - Choose this button to connect to a network location, assigning it a new drive letter.

Probability Density Function (PDF) - A mathematical model showing a representation of the probabilities for all possible values of a given variable.

Protocol - Select either Fibre Channel or Gigabit Ethernet.

	Speed = 1X	Speed $= 2X$
Fibre Channel (FC)	1.0625 Gb/s	2.125 Gb/s
Gigabit Ethernet (GBE)	1.25 Gb/s	2.5 Gb/s

Protocol (Optical) - Select the data communication protocol of the signal being analyzed. This will configure the settings on the OE-2 and lock them for that protocol. If you want to define your own instrument settings, choose "User defined" which will allow all settings to be changed.

Pulsefind Button/selection (Action menu) - Performs a peak-to-peak voltage measurement and sets the voltage threshold to be used for timing measurements. This is normally the 50% point unless rise or fall time is being measured where 20%-80% or 10%-90% is used. These rise or fall thresholds are set in the Edit|Configuration dialog box.

Pulsefind Mode - Selects the mode used when determining voltages for calculating voltage thresholds. The default is Peak.

- **Quick Mode** This option enables a sparse sampling protocol for RJ+PJ data acquisition that reduces the time required to obtain data. This method is appropriate for use only when there is insignificant higher-frequency jitter present. In the presence of high frequency jitter, the standard sampling protocol will reduce the amount of harmonic distortion that can occur.
- **Random Jitter (RJ)** Random Jitter (RJ) is probabilistic in nature and is best modeled by a Gaussian function. Random Jitter is unbounded and therefore directly affects long-term reliability.

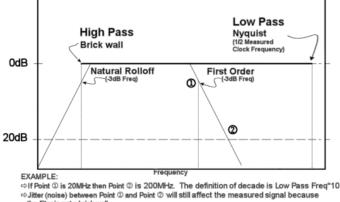
Range (ns) - Sets the length of the x-axis in the Time View. Changing this value affects the resolution of the FFT.

Range (Periods) - Number of periods over which measurements are plotted. Edges to Measure determines number of periods within this range to be measured.

Record Len (µs) - Options depend on the selection of Record Length Units.

- Rec Len (µs) for Time Interval. Number of cycles to measure determined by the time entered.
- Rec Len (Periods) for Periods. Number of cycles to measure determined by the number of periods.
- HPF –3dB Freq (kHz) for Bandwidth. Number of cycles to measure determined by the half power point of the 20dB/decade low frequency roll off.
- Record Length Units Sets the unit of measurement for the data record length. Options are: Time Interval, Periods, Bandwidth and Unit Interval.

Reference Channel - Select channel for clock input.


Multi-Channel Strip Chart Tool:

Giga¥iew		
	eric Keypao Is - ENTER	
• 1	C 2	O 3
O 4	C 5	C 6
0.7	C 8	C 9
C 10	O CDR	
Patter	n Marker	Enter

Select the Channel to be used as the reference channel. All measurements displayed on this tool show a "skew" or propagation delay. The displayed measurements will be relative to this Reference channel. Use the keypad to select one channel.

- **Reference Edge** Select the rising or falling Bit Clock edge that will be used to trigger the readings. Arms the measurement based on the Reference edge type chosen and the Measurement edge type chosen. This is available in the Channel-to-Channel Strip Chart tool.
- **Reference Edge Count** Enter a number of edges to skip on the reference edge relative to the arm time. This control is typically only used with Arming Mode set to "External Arm".
- **Remove Device** Select the "Remove Device" button to remove an optical device from the remote device list and disable the OE-2 address for the device.
- Remote Device List (OE2) The OE-2 address will appear in the Remote Device List.
- **Reset All -** Resets all user selections to default.
- Reset Counter Deletes the buffer containing the bit errors.
- Reset Hardware Clicking on this button will restart the SIA-3000. All settings will be lost unless previously saved.
- **Resolution (ns)** Sets the time increment value between each point in the Time View. The smallest value is 10ps between strobe points. Changing this affects the high frequency end of the FFT by the relationship: FFTmaxfreq = 1/z(resolution).
- **Resolution (ps)** Sets the time increment value between each measurement point. A smaller value will result in more closely spaced samples.
- **Rise/Fall Time button** Toggles on or off Rise and Fall time Measurements. Set 10%-90% or 20%-80% in the on the top menu. The default is 20%-80%.
- Rise Time Limit Pass-Fail limit for rise time measurement. This is set automatically if a protocol has been chosen.
- RJ + PJ Interpolation This option selects the means of filling the gaps in the autocorrelation function that naturally occur in a pattern. Generally, the Cubic interpolation will produce the best results in the presence of periodic jitter. Selection of Linear interpolation may be preferred in the presence of purely random jitter. In which case, the presumption of a smooth autocorrelation function cannot be made.

- RJ + PJ High Pass Filter A post-processing filter that is applied to the data after acquisition. The filter affects the determination of what are considered peaks in the FFT views. The highlighted peaks are then reported among the values displayed in the Summary View. Choices are Natural Rolloff and Brickwall. User can enter value in box labeled High Pass Frequency (MHz) only when the Brickwall selection is enabled. The displayed values are not used when options are deselected.
 - **Natural Rolloff** When selected, does not add any filtering but refers to the natural –3db rolloff, or high pass corner frequency, determined by how much data the tool is allowed to acquire. The corresponding user entry box is deselected and the value in the box is not used. (see figure below)
 - **Brickwall** is a high pass filter. It does not allow the RJ or PJ to be calculated below this user-selected value. A user entry box allows entering a frequency value. Any value entered MUST be above the frequency that is set for the –3db freq. The –3db frequency setting controls how much data is acquired and the Brickwall filter value is applied to that data. (see figure below)
- RJ + PJ Low Pass Filter A post-processing filter that is applied to the data after acquisition. The filter affects the determination of what are considered peaks in the FFT views. The highlighted peaks are then reported among the values displayed in the Summary View. Choices are Nyquist and First Order. User entry is possible in box labeled Low Pass Frequency (MHz) only when First Order selection is enabled. The displayed values are not used when options are deselected.
 - **Nyquist** This is the default. The highest frequency that the tool can measure is $\frac{1}{2}$ the clock rate (or the Nyquist).
 - **First Order** Enter a -3dB frequency. This filter does not eliminate all the jitter energy above this frequency (it is not a brick wall filter). The frequency components or spectral content above this frequency will still contribute to the RJ(RMS) as displayed from the 1-sigma plot (see figure at right).

- **RJ** + **PJ Samples** This is the number of samples in each histogram. The 1-sigma values used to create the 1-sigma vs Span plot come from these histograms. See High Frequency Modulation Theory.
- RJ + PJ Standard Error Indicates when suspect measurements have been taken, usually as a result of improper pattern selection. Default is 0.5 UI. Any measurements deviating from the ideal by more than this value will produce an error message and the test will stop. This value may need to be increased if the signal has more than 0.5 UI of jitter (such as tolerance testing).
- **RJ Calculation** This selection determines how the RJ will be calculated in the Known Pattern with Marker tool. There are essentially three different methods: TailFit, FFT and 1-sigma. Using Tail-fit is the best calculation of RJ, but there may be trade-offs in test times. For this reason, the special case FFT and 1-Sigma-based RJ calculations are provided.

To determine if you can use the FFT or 1-sigma-based RJ calculation, it is important to look at the graphical results of the tool. This is especially important in a characterization environment where many different types of jitter or setup conditions can change which RJ calculation method will provide the most realistic results AND best test times. It is first important to have a background understanding of how this tool is measuring RJ+PJ. (See the Online Help for more information.)

Run button/command (Action menu) - Use this command to repetitively acquire new measurements in GigiView. Measurements will be acquired until either the Single/Stop command is issued or an error occurs. This command affects the current tool only. Shortcut Key: F5

Sample Size - Number of time measurements included in an Histogram.

- Save As command (Tool menu) Use this command to save and name the active tool. *GigiView* displays the Save As dialog box so you can name your tool. To save a tool with its existing name and directory, use the Save command.
- Save command (Tool menu) Use this command to save the active tool to its current name and directory.When you save a tool for the first time, *GigiView* displays the Save As dialog box so you can name your tool. If you want to change the name and directory of an existing tool before you save it, choose the Save As command. Shortcut Keys: CTRL+S

Save Mask - Opens a dialog box for saving the open mask.

- **Scope Bandwidth Extension** There are two bandwidth settings: 15GHz and 10GHz. The setting will automatically reduce to 10GHz when measuring an eye diagram using a bit clock trigger.
- Scale to Fit Once the settings are selected, pressing this button will scale the eye mask as a percentage of the actual signal displayed.
- Select Button Pressing on the Select Button highlights one of the displayed Markers and allows the user to move the marker using the dial.
- Serial ATA Specifications This selection enables the specification levels to be set for the proper measurement point. The specification has requirements for DJ and TJ at the following 4 measurement points (Driver Output, Driver PCB Connector, Receiver PCB Connector, Receiver Input)
- Setup/Hold Limits Choose between typical setup and hold limits and worst case setup and hold limits. "Typical" references the Mean of the clock histogram. "Worst case" references extrapolated Min and Max values of the measured clock histogram using Tail-fit.
- Setup Time (ns) Enter the setup time specification. This will change the darkened area on the Data Histogram plot, showing a window of pass or fail.
- Share drive on network Share the drive from this instrument making it available to the local network.
- Show Derivative Plots the difference between the current measurement and the previous measurement.
- Show Grid command (Display menu) If checked/selected, vertical and horizontal grid lines will be displayed on the activated plot.
- Show Measures Toggle the statistics of the histogram samples on or off.

Show Pattern on Plot - Toggles the pattern on/off for the display.

Show Peak-to-Peak Bars - Show peak-to-peak values of a histogram for each period measured.

Show Spec Limit – Enables the specification limit selections/parameters.

- Shutdown command (Tool menu) Use this command to close all tools and end your *GigiView* session. You can also use the Close command on the application Control menu. Any changes not saved will be lost.
- SIA Channel Selects the SIA (or DTS) input channel.
- Signal Analysis button Provides options for Voltage Histograms, Eye Mask, Voltage measurements and Rise/Fall times.
- **Single/Stop command (Action menu)** Use this command to acquire a single measurement in *GigiView*. It is also used to stop a series of measurements from being taken after the Run command is issued. This command affects the current tool only. Shortcut Keys: F6

Span (edges) - Determines number of edges of span to be measured.

- **Specifications Options -** The Specifications Options permits the user to set up a window in the histogram view that characterizes an area where the signal will pass or fail a user-defined specification.
- **Spec Mode** In AUTO mode, the software will first measure the average period to determine the clock frequency. Then, based on the frequency, the appropriate spec is chosen:

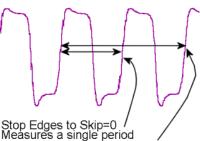
533MHz \rightarrow +/-50ps 400MHz \rightarrow +/-50ps 300MHz \rightarrow +/-70ps 267MHz \rightarrow +/-80ps

In USER DEFINED mode, the spec can be set to any value in the USER VALUE field.

Speed - Select either 1X or 2X. Speed is dependent on *Protocol* setting.

Protocol	Speed = $1X$	Speed $= 2X$
Fibre Channel (FC)	1.0625 Gb/s	2.125 Gb/s
Gigabit Ethernet (GBE)	1.25 Gb/s	2.5 Gb/s

- **SSC Frequency Samples** Sets the number of samples taken for each histogram when determining the point (between the min. SSC freq and the max SSC freq) where the PPM measurement will be performed. Also determines the SSC frequency.
- Standard Selects the high-level protocol settings.
- Start Arm Choose channel for Start Arming input. See also Arming.
- Start Delay (Periods) Set number of periods to delay before taking measurements relative to the Arm edge.
- **Start Edge Voltage -** When Threshold Voltage is in Auto, this box displays the voltages set by Pulsefind. When Threshold Voltage is in USER, the box permits manual entry of a voltage.
- Start Voltage This is the voltage threshold used to start the chosen measurement. This value is derived from PULSEFIND when "Threshold Voltage" is in AUTO. If "Threshold Voltage" is in USER VOLTS, you can enter a fixed value to be used. In USER VOLTS, PULSEFIND will have no effect on the threshold voltages.
- Status Bar The status bar is displayed at the bottom of the *GigiView* window. To display or hide the status bar, use the Status Bar command in the View menu. A check mark appears next to the menu item when the Status Bar is displayed. The left area of the status bar describes actions of menu items as you use the arrow keys to navigate through menus. This area similarly shows messages that describe the actions of toolbar buttons as you depress them, before releasing them. If after viewing the description of the toolbar button command you wish not to execute the command, then release the mouse button while the pointer is off the toolbar button.


The right areas of the status bar indicate the following information:

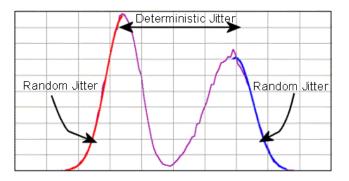
Indicator	Description
CURSOR	Displays the position of the cursor with respect to the current window.
REC/PLAY	Indicates the status of the macro recorder.
RUN	The current tool is repetitively acquiring measurements.
BUSY	The instrument is currently busy performing an operation.

Stop Arm - Choose channel for Stop Arming input. See also Arming.

- Stop Edges to Skip Will determine the number of edges to skip before the time measurement stops. When measuring Period, a value of zero will create a histogram of single period measurements. A value of one will create a histogram of double period measurements, etc. Thus, when skipping one edge, the mean measurement would be doubled (See example to the right).
- **Stop on Success** The Tailfit option has certain quality requirements that must be met in order to successfully separate RJ and DJ. If there is a large DJ component, this may require several passes. Enable this option and then use Cycle in order to accumulate until the requirements are met.
- large DJ component, this may require several passes. Enable this optionMeasures two periodsand then use Cycle in order to accumulate until the requirements are met.Stop Voltage When Threshold Voltage is in Auto, this box displays the voltages set by Pulsefind. When Threshold
- Voltage is in USER, the box permits manual entry of a voltage. See Measurement Theory.
- Summary Displays textual equivalent of composite data.
- Summary Units Select unit of measure. See also Jitter Mode.
- Sync Amplitude (V) Enter sync amplitude for Custom output configurations. See Sync Levels for limits.
- Sync Divider Sets the Sync Divider value. The Sync Divider will scale the sync frequency/period down by the divisor entered. The Sync Divider control is only available when the Sync Mode is set to Bit Clock or Independent. When the Sync Divider is set between 1 and 255, the SYNC OUT waveform appears as a pulse-type waveform. The pulse width will be the same for all division factors from 1-255. However, when a value larger than 255 is used in this control, the SYNC OUT waveform will appear as a clock-type waveform with identical high and low times.

Sync Frequency (MHz) - Sets the SYNC OUT frequency (MHz).

easures a single period Stop Edges to Skip=1 Measures two periods


Sync Level - This list control displays 10* predetermined and 3 user definable presets for the configuration of the impedance, high, low and voltage limit settings for the selected Output or Sync levels. First, the user should make a selection from the Output Level control. Choices appear for many types of standard logic, including ECL, PECL, TTL, CMOS (3.3V), and CMOS (5V). Selecting any of these will automatically determine the input's voltage threshold and termination impedance, and these values will be filled in and cannot be selected for the user to change. There are also choices for three custom voltage levels available to the user. If any of the custom voltage levels are chosen, the termination impedance and voltage threshold controls become active and their values need to be specified. See the DTS-550™ Operator's Guide for Sync Level parameters.

Sync Mode - Used to specify the mode of operation of the SYNC OUT signal.

- Jitter Sync This mode will cause the SYNC OUT to follow the Jitter Frequency value. The Jitter Frequency value must be greater than 510.8Hz. The Jitter Output On/Off control does not need to be enabled. The Sync Freq and Sync Divide controls will be disabled with this selection.
- **Bit Clock** This mode will cause the SYNC OUT to follow the main **Frequency** value. The **Sync Divide** control is enabled. The **Sync Freq** control is disabled and will follow the **Frequency** value.
- **Independent** The **Independent** mode will cause the SYNC OUT to operate as an independent signal source. If jitter is programmed, OUTPUT will move relative to SYNC OUT. This selection can also be used to generate a clock-type waveform on the SYNC OUT connector that has a different frequency from the OUTPUT signal. Both the **Sync Divide** and **Sync Freq** controls are enabled.
- Sync Offset (V) Sets the sync offset in the three custom sync level presets. Refer to Sync Level for maximum and minimum offset values.
- **Sync Termination** Sets the sync termination when one of the three custom sync level presets is selected. Refer to Sync Level for valid termination settings.
- Synthesizer Enables/disables run state of the DTS-550. When set to **On**, the instrument's internal DTS synthesizer will generate the specified waveforms. No output will be generated when **Off** is selected.

In order to receive any type of output signals from the unit, the **All Outputs** control needs to be set to **Run** and the **Synthesizer** control needs to be set to **On**.

TailFit - Pull-down menu list for enabling/disabling tail-fit feature. When Tail-fit is enabled, Random Jitter and Deterministic Jitter can be separated in order to calculate Total Jitter. To accurately predict long-term clock performance, Tail-fit is necessary when the histogram is not Gaussian. See Tail-fit theory, Appendix B, for more information. See also Force-fit.

TailFits - Determines the number of pattern spans to be measured in order to calculate random jitter. The default mode will automatically determine the number of tail-fits that are necessary to insure no frequency bias exists. When using this mode, three tail-fits are initially performed and an RMS jitter is calculated. Additional tail-fits are then performed between the initial tail-fits. If the resulting RMS jitter is not within the accuracy percentage specified, this same process is repeated. The percentage can be specified using the Accuracy option. Optionally the number of tail-fits to perform can be explicitly set. For a more detailed explanation of Tail-fit, see Appendix B.

Tdelay (ns) - Position the histogram box horizontally.

Threshold Voltage - When set to Auto, sets start and stop threshold reference voltages (see Pulsefind) based on the minimum and maximum pulse level found on each channel.

The level of input voltage at which a binary logic circuit changes from one logic state to the other. Jitter is indicated by distributed transitions (crossings) of the threshold as the data toggles between logic states. Histograms of transition regions can be taken at the threshold level.

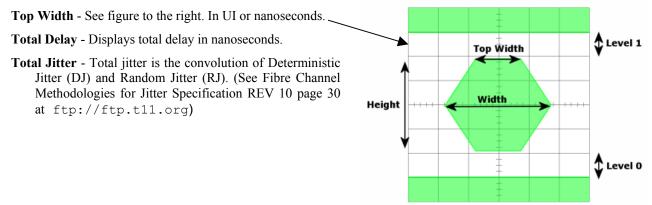
Select Auto to set the threshold to the appropriate voltage point of the pulsefind values.

For all measurements except Rise or Fall time, the 50% point is used. Rise/Fall time measurements are made according to the 10-90 or 20-80 setting in the *GigiView* Edit/Configuration menu (See figure).

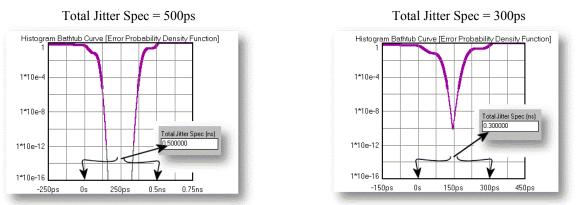
The voltages are shown in the voltage display boxes after a pulsefind is completed.

Copy 2 3 nulated Histogram 17 Aut Phyline 2 • * White Plot Line 3 e/Fall % Plot Line 4 Blue 0% - 90% Grey . • Orange Background White Font Data Path 3001484 Device Configur Disable Front Panel Displ

Select "User" to manually enter threshold voltages in the voltage display boxes. A pulsefind cannot be performed with this setting.


Tile command (View menu) - Arranges tool views side by side so each is visible and that no windows overlap.

Time Per Division - Sets the horizontal time scale, or use the "Horizontal Scale" knob on the front panel.


Timer Calibration - Calibrates the instrument to ensure the instrument meets specifications. The calibration data is stored in the instrument and used each time a measurement is taken. The instrument should be warmed up at least 30 minutes before calibration. Internal calibration takes 5.5 minutes. Extended Internal Calibration allows the user to possibly reduce jitter due to the noise floor of the instrument through the use of longer internal calibration periods. A pull down menu to the right of the Extended check box selects the length of the calibration. See Appendix C for a complete explanation of all calibration features.

Time Increment - Set the increment value between each strobe point. Resolution is 10ps.

- **Title Bar** The title bar is located along the top of a window. It contains the name of the application and tool. To move the window, drag the title bar. Note: You can also move dialog boxes by dragging their title bars.
- **Toggle Marker Next Button** Clicking on the Toggle Marker Next Button scrolls through <u>Marker</u> selections by displaying current selection on window.
- **Toolbar command (Display menu)** Use this command to display and hide the Toolbar, which includes buttons for some of the most common commands in *GigiView*, such as Tool Open. A check mark appears next to the menu item when the Toolbar is displayed.

Total Jitter Spec (ns) - The width used in the Bathtub View to assess the Error Probability in nanoseconds. Different specs will yield different bathtub curves) without re-acquiring measurements.

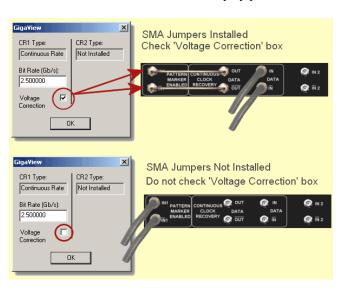
Transimpedance - The ratio of differential output voltage to differential control current.

Trigger - Select trigger source channel.

Trigger button - Select and configure a trigger channel.

Trigger Edge - Selects the rising or falling edge to trigger the instrument.

Trigger Method - Select Auto to set the trigger threshold voltage to the 50% voltage point of the Pulsefind values on the selected trigger channel. Voltage is displayed in "Trigger Voltage." Select "User" to manually enter a threshold voltage in "trigger Voltage." Limits are +/- 1.1 volts.

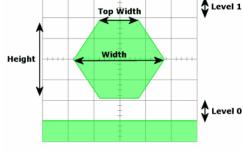

Trigger Options (Oscilloscope) - Permits Oscilloscope trigger options to be set including Channel, Voltage and Edge.

- **Trigger Voltage** Displays the threshold voltage used to trigger the instrument. If User is selected in the Trigger Method box, the user can enter a value. Limits are +/- 1.1 volts.
- UI Window Enter the desired UI Window. Similar to entering an "eye opening" value.
- **Unit Interval** One Unit Interval (UI) is one cycle of the clock frequency, which is the normalized clock period. Jitter expressed in UIs describes the magnitude of the jitter as a decimal fraction of one UI.

Units - Select unit of measure.

User Value (ps) - Entry field for the user defined Spec lines displayed on the Jitter Plot view.

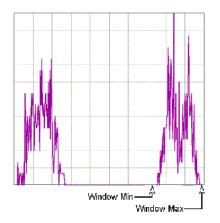
- **Values on Plot button** (²⁸³) Clicking on button will toggle select measurement data in text format in the active tool window. These displayed values can be selected using the **Values on Plot...command** in the display pull-down menu.
- Values on Plot...command (Display Menu) When selected, a dialog box pops up providing the option of displaying all or select measurement data in text format in the active tool window. The example to the right is from the High Frequency Modulation Tool.
- V. Correction The Voltage Correction Box should be checked when the SMA jumpers are installed for use with the Clock Recovery. The data signal is split and the SMA jumpers route the signal into the IN1 measurement channel. This means that the voltage split needs to be compensated for by using values from the 'External Calibration with DC offset'. By checking this box, the tools making voltage measurements will compensate for the jumpers.

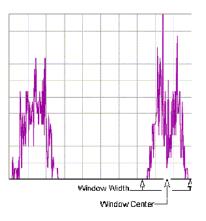


- **Verify Calibration** This verification does NOT change any calibration values, it only checks them and suggests whether or not a calibration should be performed. As the next step after verification, a calibration may need to be performed.
- View List Displays open tools. User can activate open tool by selecting.
- Voffset (mV) Position the histogram box vertically.
- Voltage Average/RMS Toggle on or off the display/measurement of Average and RMS values.
- Voltage Extremes Toggle on or off the display/measurement of Vmax, Vmin and Vpk-pk.
- Voltage Measures button This button opens a menu allowing the choices of various voltage measurements such as Vmax, Vmin, Vavg, Vovershoot, Vundershoot, Vmid, Vtop, Vbase.
- **Voltage Over/Under shoot** Toggle on or off the display/measurement of Overshoot and Undershoot measurement. This value calculates the difference between the Vmax and Vtop as the Overshoot. The Undershoot is the difference between the Vmin and Vbase values.
- **Voltage Typical** Toggle on or off the display/measurement of top (Vtop) and base (Vbase) voltage levels, the amplitude (Vampl) between these two values and the midpoint (Vmid) of these points.
- **Volts Per Division** Sets the Vertical Scale or use the "Vertical Scale" knob on front panel.
- **Wavelength** Choose the wavelength of the optical signal to be measured.

Width (ns) - Scale the width of the histogram box.

Width (ps) - Defines the width of the specification area.


- Width (UI) Scale the width of the histogram box in Unit Intervals
- **Window Center** Enter center reference time of a timeband to be used in calculating statistics when Filters is enabled.



Window Filter - The Window Filter is a post-processing filter that ignores m

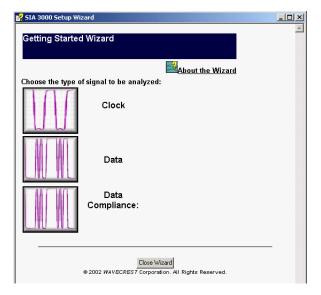
parameters. The summary window will show the statistics from the measurements within the filter window and the histogram view will display the filtered region. The filter does not change the number of samples that fall within the filtered area, so the **Hits Per Edge** reflects the total unfiltered histogram. To increase the number of samples falling in the filtered area, the Hits Per Edge will have to be increased. For example, if there are two roughly equal distributions displayed without filters and the hits per edge is set to 1000, the probability of a value occurring in either distribution is equal. Therefore, the filtered data may contain approximately 500 hits.

The window filter can be enabled in either of two ways: choose Max/Min values or choose Center and Width values.

Window Maximum - Enter maximum filtering time in seconds. See also Filters.

Window Minimum - Enter minimum filtering time in seconds. See also Filters.

Window Width - Enter filter range (0 to ± 2.49 seconds) of Window Filter. See also Filters.


Wizard

To use the Wizard:

- 1) Press the button for the type of measurement you would like to make.
- 2) Follow Setup Directions.
- 3) Choose parameter to be measured. The SIA-3000 will make that measurement. Some measurements may take a while to complete. Wait for the "Single/Stop" button to turn off. The measurement is now complete.
- 4) Press "Close Wizard" to return to GigiView.

Wordpad - Clicking on this button launches Wordpad.

Work Area - Where active and/or open tools are displayed.

X-axis - Select the horizontal plot axis unit of measure.

Event - Take a measurement for each event from START event to STOP event and plot these values versus the count. **Time** - Take a measurement and plot the value versus time.

UI Spans - Shows number of UI spans measured.

Delay Time - Shows time from Arm.

Delay Periods - Shows number of periods from Arm.

Span Periods - Shows number of periods measured.

Span Time - Shows units of time measured.

Measurement - Shows number of total measurements.

Elapsed Time - Shows elapsed acquisition time.

Hit Number - Low Frequency Modulation: Hit number is integer value assigned to each measurement as it is made.

X-Axis (Bathtub) - Select the horizontal plot axis unit of measure.

Y-Axis (Bathtub) - Select the vertical plot axis unit of measure.

Zoom command (Display Menu) - Allows the option of zooming only the x-axis, y-axis or both the x- and y-axes when utilizing the Zoom In/Out feature.

Zoom Both command (Display menu) - Zooms both the x and y axes when using the Zoom In/Out feature.

- Zoom In/Out The Zoom In/Zoom Out feature is activated using the left button of a pointing device (mouse). To Zoom In, click and drag using the left mouse button until the area to be enlarged is highlighted. This can be done repeatedly until the desired magnification is achieved. To Zoom Out, double click the left mouse button.
- **Zoom Reference Left** will zoom holding the left position. **Center** will zoom holding the center position. This setting will affect how the Horizontal Scale knobs zoom on the waveform.

Zoom to Eye - Automatically positions Eye on the display.

This page intentionally left blank.

WAVECREST CORPORATION

World Headquarters: 7626 Golden Triangle Drive Eden Prairie, MN 55344 TEL: (952) 831-0030 FAX: (952) 831-4474 Toll Free: 1-800-733-7128 www.wavecrest.com

West Coast Office: 1735 Technology Drive, Ste. 400 San Jose, CA 95110 TEL: (408) 436-9000 FAX: (408) 436-9001 1-800-821-2272

Japan Office:

Otsuka Sentcore Building, 6F 3-46-3 Minami-Otsuka Toshima-Ku, Tokyo 170-0005, Japan TEL: +81-03-5960-5770 FAX: +81-03-5960-5773